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ABSTRACT
The Stommel two-box, two flow-regime box model is kinematically and dynamically equivalent to the flow in a one-

dimensional fluid loop, although one having awkward and extreme mixing coefficients. More generally, such a loop,

when heated and cooled at the same geopotential, provides a simple example of the working of the Sandstrom theorem,

with flow intensity capable of increasing or decreasing with growing diffusion. Stress dominates real oceanic flows,

and its introduction into the purely thermally driven loop generates oscillations, multiple states, and instabilities at low

diffusivity. When, within the Boussinesq approximation, salinity forcing and mixed boundary conditions are further

introduced, an intricate pattern of response appears, dependent upon at least five non-dimensional parameters, including

the time of onset of salinity forcing. The ability, in a one-dimensional loop, to produce such a rich array of dynamical

behaviors, dependent in detail upon the problem parameters, suggests that in the absence of any general results relating
one- to three-dimensional fluid flows, identification of the time-dependent behavior of a GCM with that of the one-

dimensional loop Stommel models should be regarded as still primarily speculation.

1. Introduction

This paper began as an attempt to find a simple teaching demon-
stration of the operation of the so-called Sandstrom theorem for
the behavior of a fluid heated and cooled at the same level, and
an independent effort to understand the impact of finite stratifi-
cation on the two-box model of Stommel (1961, hereafter S61),
commonly employed as an analog of multistate ocean circula-
tions. It fairly soon became clear that the two goals were the
same, and they have thus been combined here into the study of
flow in a one-dimensional loop.

A surprisingly large literature exists concerning one-
dimensional fluid loops. The volume of papers ceases to be sur-
prising when one begins to appreciate the complexity of such
flows in the presence of heat and salt sources. Although the orig-
inal motivation of this paper was as described, the final goals
are: (1) to reduce the loop system, in the presence of heat and
salt, to what may be its simplest possible configuration; (2) to
obtain a solution demonstrating the Sandstrom theorem; (3) to
make explicit the connection between the S61 box model and
the one-dimensional fluid loop, with emphasis on the role of
mixing; (4) to study the influence of a wind stress analog on the
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system; (5) to question the analogies drawn between the behavior
of three-dimensional time-dependent GCMs and the fluid loop
flows.

The last point is perhaps the most important; we find that
one-dimensional fluid loops with buoyancy forcing at a fixed
depth display a remarkable range of oscillations and instabil-
ities. Analogies are often drawn with the behavior of ocean
GCMs by claims that the fluid loop (in the guise of the S61
model) has captured the basic physics. However, theories of
the ocean circulation (e.g. Pedlosky, 1996) tend to emphasize
the role of three-dimensionality and, particularly, the powerful
role the wind-driven currents play in controlling both the cir-
culation and its interaction with the atmosphere. It is difficult
to imagine any one-dimensional circulation able to mimic the
time-dependent, or stability, properties of an ocean circulation
dominated by western boundary currents on the one hand, and
a complex three-dimensional return flow on the other — even in
a laminar regime. To the extent that such analogies can truly be
drawn, one has achieved an exceedingly powerful simplification
of a complex fluid problem that needs to be widely understood
and celebrated.

One goal here is to show the great sensitivity of one-
dimensional buoyancy and stress-driven models to specification
in empirical parameters, such as the diffusion coefficients and
stress. These models are of interest in their own right. Whether
three-dimensional GCMs, with their multiplicity of pathways,
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are likely to have a similar behavior is a question that will be
raised again at the end.

2. A simple model

2.1. The loop

The study of fluid loops of such narrow cross-section that they
can be considered governed by one-dimensional flow dynamics
dates back at least to Jeffreys (1925). More recent interest arose
with the pioneering papers of Keller (1966), Welander (1967),
and Malkus (1972), and a large succeeding literature, some of
which is discussed below. Thermally excited loops have major
engineering applications in manufacturing, in heat exchangers,
and the like (called ‘thermosyphons’) and three-dimensional ex-
tensions exist (e.g. Jiang and Shoji, 2003).

Consider the circular loop shown in Fig. 1, and the defining
polar coordinate system, taking ¢ as measuring the angular dis-
tance from the top, positive in the counterclockwise direction.
The radius is a, and the loop is supposed sufficiently thin that
we can ignore all flows except w, in the azimuthal direction,
and which of necessity, in the Boussinesq approximation, is a
constant with ¢. (w is a Poiseuille flow in a tube of vanishing
cross-section.) A heating source exists at angle ¢, and there is
an equal and opposite cooling source at ¢ _. Neither the notation
nor the coordinate system for this geometry is universal in the
literature.

Let density be a linear function of temperature, 7', and salinity,
S,

p@, 1) =po[l = ArT($, 1)+ AsS(®, 1)] ey

Heat / Salinify

Cool / Freshen

Fig 1. Coordinate system used to define the loop flow problem. ¢ is
measured from the vertical, and heating and cooling sources appear at
¢ = ¢ +. Radius is a, and the loop is sufficiently thin that there is no
cross-loop dependence. ¢ _ is generally taken to be negative.
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where A7 and A are the respective expansion/contraction co-
efficients, and p is a constant. The governing thermal equation
is

oT  waT

=2 H[5(¢ — ¢1) — 8(¢p — ¢-)]h(r)
+y[T*(9) — T(@)]. (@)

8(¢) is the delta-function, and h(¢) is the Heaviside function,
permitting the heat source and sink to turn on at + = 0, and
to remain steady thereafter. H is a constant, y is a coefficient
with dimensions of reciprocal time, used to ‘restore’ T (¢) to a
prescribed temperature field 7(¢), and « 1 is the thermal diffu-
sivity. Unlike most previous studies, delta-function sources are
included here to permit easier separation of the behavior of the
system with restoring terms from one with externally prescribed
sources. The salinity field is governed by

S  waS

— = 215[8(¢ — d4)
—8(¢ — p)Ih(t — 1), 3

where t. permits the salinity sources to turn on at time ¢, > 0.
The salinity diffusivity, « s, could differ from that of temperature,
permitting discussion of double-diffusive phenomena, but in this
paper they are taken to be equal.

Dewar and Huang (1995) and Huang and Dewar (1996) have
made the important point that the employment of salinity sources
in eq. (3) corresponds to an oceanographically non-physical
pseudo-salinity boundary condition (see also Huang, 1993). The
ocean does not exchange salt with the atmosphere, only freshwa-
ter, i.e. mass. A mass source should appear in a different equation,
that of continuity, which in the present case could be written

d(rw) ow

ot oo = 2 Mo[5(¢ — ¢4) — 8(p — ¢-)]

X 8(r — ro)h(t —t.), 4)

where M is a magnitude, and r, is the outer radius of a torus
centered at » = a, of finite diameter 2r,. The right-hand side of
eq. (3) should then vanish. Dewar and Huang (1995) show that
substitution of a pseudo-salinity boundary condition, for what
they term the ‘natural’ boundary condition of mass flux, can
lead to qualitatively different flows.

In the present situation, we will nonetheless use the pseudo-
salinity boundary condition, primarily because it leads to the
possibility of a nearly analytical solution procedure, in contrast
to the use of eq. (4), and which appears to require a numerical
solution almost at the outset. Furthermore, because almost all
GCMs use pseudo-salinity boundary conditions and the Boussi-
nesq approximation, and we seek to relate solutions here in part
to their results, one can argue, with partial conviction, that re-
tention of the common boundary condition renders the compar-
ison more straightforward. Continuity then reduces simply to
dw/d¢ = 0. The use of this condition does again raise the
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general question, taken up at the end, of whether loop flows
in any way do represent oceanic circulations.

The momentum equation in the Boussinesq approximation is
ow ap

o7 = “apyag TEL T ATT@) + AsS@)Ising — ew +(,5)

where p is the pressure, and ¢ is a Rayleigh friction coefficient

acting on the along-loop flow. The second term on the right-
hand side of eq. (5) is the azimuthal buoyancy force and t is
an externally prescribed stress assumed uniform along the flow
path (unnecessary, but convenient).

Non-dimensionalization is useful, but there is not a unique
best choice. Using primes for non-dimensional variables we put

e

P = P A Sa’;}i p 5 1= Z/,
oV 8AT ngTH
= QGEAIHT./ S = S S/
’ 0 gHAT

which scale with the thermal source strength. A limitation of this
scaling is its use of ¢, which hides a Prandtl number dependence.
Equations (2), (5) and (3) become

AT 9T 3T
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R and Ry are inverse Rayleigh numbers (Ra), and Pr is a Prandtl
number. Note that the dimensional time-scale is a/w.
We define p’ = pj, + p,, where

=0.

3¢
This equation represents the rest hydrostatic pressure (noting
that the sign of the pressure gradient reverses with the sign of ¢.)
This rest pressure can be ignored in what follows, and we will
work only with p/, suppressing the subscript.

The algebra of this system is simplest if the heat and salt
sources are both replaced by restoring conditions dependent only
upon sin ¢, or cos ¢, as has been done in most previous studies;
however, the physical motivation is then perhaps less transparent.
Doing so also raises questions about the system energetics. Spa-
tially limited sources permit unambiguous specification of the
depth of heating/cooling, a major consideration in understanding
the response. With restoring, the depths of heat entry/exit depend
upon the flow itself, and thus we retain the explicit sources.

2.2. Loop—-Stommel model

Before continuing, let us connect the loop to the S61 model.
Since the introduction of the box model in S61, such constructs
have been regarded as surrogates for the behavior of much more
complicated dynamics of various climate states (e.g. Manabe and
Stouffer, 1999). S61 explored the possibility of multiple states
(of flow, temperature, and salinity) in a configuration governed
only by the differing transfer rates of temperature and salt be-
tween the oceanic and external reservoirs. An important element
of Stommel’s original formulation (Fig. 2) is the existence of the
two mixing propellers used to keep the boxes uniformly mixed as
fluid flows between them. In S61, Stommel said little about these
mixing devices, and they mainly disappeared in most subsequent
discussions of, and elaborations on, the model, evidently being
regarded as more or less incidental or uninteresting details of the
problem. Many variations of the Stommel model have been pro-
posed and used (reviewed by Whitehead, 1995 and Marotzke,
2000). Recent discussions of the oceanic meridional overturn-
ing circulation, however, for which the model is most widely re-
garded as a prototype (Munk and Wunsch, 1998; Huang, 1999;
Nilsson and Walin, 2001; Wunsch and Ferrari, 2004) suggests
that the mixing rates and distributions may, in practice, be the
central element of the problem, essentially controlling both the
nature and rates of flow.

Vessel 1 Vessel 2
loverflow]

q
5
7

copillary
—
q

Fig 2. Model employed by S61 to analyze possible multistate flows.
Note the mechanical mixing devices depicted as stirring the two
reservoirs. Here the two reservoir values (S;, 7;) are governed by the
external reservoir values (S, 7), the rate of lateral transfer (¢), and the
infinite mixing represented by the two propellors.
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A number of authors have noticed the close relationship be-
tween the loop models and S61 (see, for example, Welander,
1985; Whitehead, 1995; Dewar and Huang, 1995). The S61
model is a form of rectangular loop, albeit with somewhat awk-
ward conditions. In the present circular loop, we define

Rs1(#)=0,¢_ < <¢;,2¢, <p <m,—7m <¢ < ¢_,
=Roos 1 < <2¢,,2¢_ < <¢_,
|ps] < 7/2|, Rog — 00, ©)

that is, the diffusion (inverse Rayleigh number) vanishes in the
upper part of the loop between the heat/salt sources, and in the
corresponding, symmetrically placed, region at the bottom of the
loop2¢ <¢ <m,—m < ¢ <2¢_. Diffusion becomes arbitrar-
ily large below the two source positions, in what corresponds to
the S61 reservoirs. Omitting the sources, we can then write the
heat diffusion equation as

T 9T 0
tw— - —
ar’ ¢ 0¢

R | = [ T 10
0 @55 |=7 [T = T @) a0

T*(¢) would be the constant Ty, ¢, < ¢ < 2¢,, and —T,
2¢_ < ¢ < ¢_, to provide Stommel’s forcing to external bath
temperatures. A similar equation with restoring is written for
salt (but see the comments by Dewar and Huang, 1995, concern-
ing salinity conservation in that case). The momentum equation
remains unchanged.

The focus of most discussion has been on the nature of the
multiple states and transitions possible when both temperature
and salinity boundary conditions are imposed, examining among
other problems the use of so-called mixed boundary conditions
when fluxes are used for salt or equivalent salt boundary con-
ditions, and restoring is used for temperature (see Tziperman et
al., 1994; Dewar and Huang, 1995; Huang and Dewar, 1996).
A major limitation of most discussions of S61-like models is
their omission of any role for the wind stress, although Stommel
and Rooth (1968) showed that it had a profound effect on the
flow properties. Given the dominant importance of the western
boundary currents and their return flows in the oceanic general
circulation, one of the more surprising features of many discus-
sions of the ocean in climate change is the entire omission of
the wind-driven circulation. Apart from these kinematic effects,
the energetics of models lacking mechanical sources of energy
(Paparella and Young, 2002; Wunsch and Ferrari, 2004), such
as the wind and tides, are unrealistic. Models that simply omit
the wind stress without any justification are not easy to inter-
pret. Here we will try to partially remedy that lack. [A recent,
entirely independent, attempt at adding wind effects by addition
of a third box, is the paper of Pasquero and Tziperman (2004);
Maas (1994) takes a very different approach.]

Some of the consequences of the results here concern the
impact of temporally changing diffusion rates in an existing
flow. Such a situation would be uncommon when the coeffi-
cients are molecular in origin. However, in oceanic and other
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models, these coefficients originate from ‘eddy-mixing’. They
are imposed through outside mechanical forces such as winds
and tides (Munk and Wunsch, 1998; Huang, 1999; Paparella
and Young, 2002; Wunsch and Ferrari, 2004), and the extent to
which a flow can undergo major transitions through apparently
small effects becomes of concern. (An example is the possibility
of abrupt change in deep ocean mixing from tides when conti-
nental shelves are added or removed by sea level changes. This
problem will be discussed elsewhere.) To the degree that oceanic
mixing is a consequence of the wind stress (see Wunsch (2005)),
it is yet another reason for regarding its presence in models as
essential.

Given that the S61 model is dynamically and kinematically
equivalent to a loop, we can analyze the flow behavior in a more
transparent way than is possible in the original S61 context with
discontinuous, infinitely large, or zero, inverse Rayleigh numbers
within the loop.

3. Thermal driving alone: no relaxation

3.1. Static solutions: the Sandstrém theorem

To continue most simply, and to focus on the implications of
Sandstrom’s inference, we eliminate the salinity forcing, stress,
and restoring, so that " = ' = D = 0, and assume a steady
state. The only surviving non-dimensional parameter is R. T’ is
necessarily periodic in ¢ and so

T(@) = ) ae",
1
8(p —dy) = E Z ein(@—9¢x) (11)

Substituting into eq. (6),
) efin¢+ _ efinqb,

T'(@¢)= Y

n=—00

T R e, (12)
oy = 0 by virtue of the zero mean value of the sources. Note
that w’ is still unknown, but it is a constant in ¢, which is not
true if one uses the Huang (1993) natural boundary condition.
Substituting into eq. (8) and integrating around the entire loop
in the steady state

/n 00
—7 p=—00

All terms except n = =£1 vanish, and eq. (13) produces

e*i”¢+ _ efind), )
me‘"¢ Slnd)d¢ = 27'[11)/. (13)

,COS ¢y — COS Pp_ sing_ —singp;,.
T Rrwr N Rrwr W (14

Particular attention is paid here to the case in which the geopo-
tentials of heating and cooling (and/or salt/fresh) sources are the
same, ¢, = —¢_, intended to mimic the oceanic case. Then the
Sandstrom theorem (e.g. Sandstrom, 1908; Defant, 1961; Colin
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de Verdiere, 1993; Munk and Wunsch, 1998; Huang, 1999; Pa-
parella and Young, 2002) shows that the flow field should be
proportional to the diffusion rates, x r and « 5. Because diffusion
is commonly a mechanism for dissipating structure and thus
weakening flow fields, it is interesting to specifically investigate
a flow that is proportional to the rate of diffusion.

The Sandstrom theorem asserts that, in a perfect fluid with
a heating source above the cooling one, little effective work to
sustain the flow against friction can be done by the buoyancy
forcing alone, and that with the heating and cooling at the same
level, only a very minor flow can result. (‘Above’ refers to the
geopotential.) Although the Sandstrom argument is not rigor-
ous (e.g. Paparella and Young, 2002), it does appear to have a
strong qualitative validity. The situation is entirely different in
the configuration — associated with Rayleigh—Bénard convection
— under which the heat source lies below the cold one. Wunsch
and Ferrari (2004) called the stable situation with heating above
cooling ‘type 2 convection’, and with them at the same levels,
‘type 3 convection’ . The unstable (for high enough Rayleigh
number) Rayleigh—-Bénard situation was ‘type 1’ (Stern, 1975
termed types 2 and 3 ‘horizontal convection’). When attempt-
ing to relate the Sandstrom theorem to the ocean, care must be
exercised because of the presence in the real system of finite
external sources of mechanical energy which generate their own
structures. A reinterpretation, or corollary, to the theorem would
be that the observed finite abyssal stratification (finite buoyancy
frequency, N) cannot be sustained by type 2 or type 3 convec-
tion in the presence of bottom water formation that would tend
to fill the abyss. Instead, the external mechanical sources must
provide the energy powering the turbulence inferred to mix the
bottom water back to the surface. (If all deep isopycnals outcrop
at the surface where direct wind-driven turbulence can provide
the mixing, then no abyssal turbulent diffusion is required. The
observed ocean, however, does not exhibit the required outcrops.
A discussion of the upper ocean, where outcropping does exist,
is quite different.)

3.1.1.
one heats at ¢, = 7, and cools at ¢ _ = 0, corresponding to
Rayleigh—Bénard convection, and useful as a contrast to the type
3 situation. Then,

2w’

R2 + w'?

Type 1 convection: heating below cooling. Suppose

=w, (15)

whose solution is
w' =[0, £v/2 — R2].

For R < 2, the zero root corresponds to an unstable diffusive
equilibrium; above R? = 2, the system is stable. The other two
roots are mirror images in which R < +/2; that is, the Rayleigh
number must exceed 1/ /2 formotion to exist, otherwise the only
solution is w’ = 0. Figure 3 displays the steady-state temperature
field for the case R = 0.1, w’ > 0; the displaced temperature field
produces the torque acting to support the flow against friction.

£ o
}_
-1
-2 o
-3
2 0 2
¢

Fig 3. Temperature as a function of ¢ for R=0.1, F =0, and w’ > 0,
in the steady state with heating from below and cooling from above
(type 1 convection). Note that the sense of ¢ has been reversed for
visual convenience, with the heat source to the viewer’s left. The
position of the cold source is at ‘0’, and of the warm at ‘+’. The values
were obtained from a 40-term sum of the Fourier series, with tapering
introduced to suppress Gibbs effects.

When R = 0 (equivalent to zero diffusion), there is nonetheless
a pair of symmetric solutions with w’ = £2, the maximum value
(cf. Tritton, 1988, section 17.3).

3.1.2. Type 3 convection: heating and cooling at the same
level. For an oceanic analog, the most interesting case is heating
and cooling at the same level. Take ¢, = —¢p_ = /4, and eq.
(14) reduces to

(R2 +w?w' = —v2R (16)

(cf. eq. 15) with one real root for R > 0

1
w = 6[12(162R2 + 12R%'2 — 108R~/2]'?

2R?
[12(162R2 + 12R%)1/2 — 108 R~/2]1/3"

a7

and plotted in Fig. 4. Note that w’ < 0; that is, flow is from warm
to cold at the top, which will be called a ‘thermal’ mode.

15
]
05
'; 0 77777777777777777
-05 ///
1 j
5 5 10 15

R

Fig 4. w’ versus the inverse Rayleigh number, R, for the case in which
the heat source and sink are at the same level, (¢ + = £ /4). w’ <0
implying flow from the warm source toward the cold sink. R is
defined as the value at the minimum of w’.
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Fig 5. Type 3 convection with w’ = —0.83 4
and R = 1. The upper-left panel shows
temperature as a function of ¢ in radians (but
reversed to place positive ¢ values to the

T(¢)

left). Heat source (4) and cooling source (0)

heat flux(o)
|

are shown at the appropriate angles. The 0 /

upper-right panel is the heat flux Fy as a 4

function of ¢. The lower-left panel is a

pseudo-subtropical box, mimicking that in
S61, plotted with an arbitrarily chosen width
S0 as to permit contouring the temperature
field, with z = —1 + cos ¢. This box

w

-0.5

displays upwelling of cold water in

[N

equilibrium with downward diffusion of

heat. The lower-right panel is the N
corresponding pseudo-subpolar box. Here

one has downwelling and a near-uniform

temperature. The upper depth limit in the

two pseudo-boxes is the depth of the sources.

There exists a maximum value of |w’| (Fig. 4) and defining
R = R.. For small R (large Ra), eq. (17) is

w' ~ —26R3 4 O(RY)

or |w'| o¢ k'3, vanishing as expected, as the diffusion goes to
zero (with fixed &, this limit is one of infinite Prandtl number).
The fact that there is no motion in this situation (in contrast to
type 1 convection) with no diffusion is a result consistent with
the Sandstrom theorem. As is clear from Fig. 4, the flow also
vanishes as R — oo, i.e. as the diffusion grows large. Suffi-
ciently large diffusion forces the fluid towards a more uniform
temperature, and thus a weakened flow. Increasing diffusion can
either strengthen or weaken the flow, depending upon the cor-
responding value of R relative to R.. The temperature from a
solution with R = 0.1 is displayed in the upper part of Fig. 5.
The heat flux
o T’

FH=wT(¢)—R%, (18)
is also displayed.

Following S61, we can map the present purely thermally
driven loop onto a pseudo-oceanographic form with the two re-
gions, —m < ¢ < ¢_ and ¢, < ¢ < m, shown as though they
were polar and tropical oceanic basins, respectively (lower part
of Fig. 5). For plotting purposes, the lower pipe of S61 has been
reduced to an infinitesimal length, the entire region below the
sources being shown as part of the two boxes, and 7/ = —1 +
cos ¢. In this configuration of relatively high diffusion, the sub-
tropical box maintains a finite stratification in a balance between
upwelling cold water and downward heat diffusion. The polar
box both downwells and diffuses heat, rendering it nearly uni-
form below the incoming warm water.

The low diffusion limit of the loop is depicted in pseudo-
oceanographic form in Fig. 6. The deeper parts of both pseudo-
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1
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-1
1 2 3 4 5

boxes are cold and nearly homogeneous, in the analog of the
filling-box limit discussed by Munk and Wunsch (1998). The
tropical box is now dominated, below the heat source, by the up-
welling cold water. Homogeneous fluid can be the result of either
very small or very large (as in S61) diffusion. Note that, despite
the large change in the magnitude of w’ (the mass flux) and in
the temperature distribution, the heat flux is nearly unchanged

-2

between Figs. 5 and 6. One must carefully distinguish mass and
heat flux in all such flows — the thermal and mass circulations
are not the same even in this simple example (Wunsch, 2002).

3.2. Sandstrém theorem and the effects of stress

We now seek to understand the effects of a stress on the result-
ing flow. Stommel and Rooth (1968) modified the S61 model,
omitting salinity effects, but considering the effects of a wind
stress on the flow field. They concluded that in this situation,
there would be two equilibria: one with a strong stress-driven
flow supporting the buoyancy forcing, and the second a weak,
nearly stalled flow in which the stress and buoyancy opposed
each other. To explore this situation, and still without salinity
effects, let 7/ # 0 in egs. (8) and (13) reduce in the steady state
to

L

For the case ¢ = £ /4, this becomes

efindu _ efind), .
We'”¢ Sln¢d¢ = 27'[('11)/ — T/).

(R2+wdHw' — 7)) = —v2R. (19)

In one dimension, choosing values of t’ to represent an analog
of the oceanic case of combined stress and buoyancy forcing is
not so easy. At subtropical North Atlantic latitudes, the wind-
driven interior flow combines a northward Ekman flux at the
surface with a southward geostrophic flow at depth; however,
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20 + 2
[
15
0
10
- -1
£ s
—

heat flux(o)
)

Fig 6. Same as in Fig. 5 except for w’ =
—0.24 and R = .01, i.e. for very small
0 diffusion. The near homogeneity of the two
) pseudo-boxes displays the ‘filling-box’ limit
discussed by Munk and Wunsch (1998).
Note the heat flux at ¢ = 0 has not changed
-6 despite the very different temperature
distribution and value of w'.

~o 5 10 15 o

R R

Fig 7. Roots of eq. (19) for R(w’) for varying values of 7’. The case " = 0 is repeated here (see Fig. 4) for completeness. When t’ < 0, the thermal
driving reinforces the effects of the stress. However, when 7/ > 0, thermal and stress driving compete, with stress dominating for large inverse

Rayleigh numbers, and with the thermal effects becoming stronger in the limit of small diffusion. The case t’ = 2 is displayed twice with different
axes to show the structure for small R. For large R there is only one solution, near w’ = t’, but for small diffusivity, multiple roots appear. The solid
line is the positive root R(w’) and the dashed line is the negative. The value of 7’ is shown as a dotted line.

there is a southward Ekman flow in the northern part of the gyre.
In bulk, however, the northward advection of warm water in the
Gulf Stream system dominates the entire wind-driven system at
subtropical latitudes, and leads to choosing t’ < 0. Both the stress
and thermal forcing act then to drive the surface flow from warm
to cold, and eq. (19) produces w’(R) which shifts quantitatively
from the no-stress case, but introduces no new behavior.

In a subpolar gyre, however, one might argue that v’ > 0 is
physically most interesting (the difficulty of using a single-loop
geometry to describe a real ocean flow is evident once again).
With 7’ > 0, wind and thermal forcing are opposed at the surface.
Equation (19) is again cubic in w’, but it is quadratic in R as a
function of w’. Solving for R(w’, t) leads to the results shown
in Fig. 7, which includes a repetition of the case v’ = 0. For
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large R, that is, large diffusion, all cases asymptote near w’ = 7/,
with the thermally driven flow systematically producing a small
contribution in the negative direction. As R — 0, 7" > 0, w’ =0,
is the solution. When 7" < 0, the R — 0limitis w’ = t’. For large
positive t’ there are multiple roots at small R, some of which are
spurious. The case t/ = 2 is displayed in Fig. 7, showing the
structure for small R. The time-dependent calculation (below)
shows that the small R, low-diffusion, steady-state asymptote is
w’ — 0. This is the Stommel and Rooth ‘stalled’ solution. When
7’ = 2, there exist multiple roots at small R (Fig. 7); which are
stable and unstable remains to be determined.

For positive 7’ in the small diffusion limit, one anticipates
that slow temporal changes in t’ and R lead to a complex system
behavior. In the interests of space, however, we turn now to the
transient behavior under forcing proportional to the Heaviside
function.

4. Transient behavior

Keller (1966) assumed an inertialess flow, ' — 0, which is a
high Prandtl number limit, and for the moment, we follow that
lead. Substituting into eq. (6), treating w as time-independent,
and taking the Laplace transform, produces [with T'(¢, t =
0) =0]

e*i’l¢+ _ e*iﬂ(ﬁ—

() = ————————,
() s(s +iw'n + Rn?)
where the tilde represents the Laplace transform in variable s.
From the inverse transform

e ity _ gming- o
O[,Z(l‘/) — [] _ e—(mw +Rn“)t ]

w'in + Rn?

Substituting into the reduced form of eq. (8), and integrating over
the loop, again only the n = 1 terms will survive the integration
producing

T eTitr _eTi¢- e
[ S e et sing dg
-7
T gt _ el- e
[l e e e g g
= 2rw'(t) (20)

w’ is always real, and T'(¢) is stable for all R > 0. One must
verify, after the fact, that the solution for w’ satisfying eq. (13)
does not violate the assumption that Fdw’/dt’ is negligible.

4.1. Type I convection
With ¢ . = 7, ¢ _ = 0, the solution is
T'(¢,1') = 2Re

00
x Z(e—inn _
n=1

_ 7(inw/+an)I’

elnd 21)
iw'n +n2?R
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with
. 2
- w/2 + R2
X (—w' — Re

+w' =0 (22)

—Rt' —Rt'

sinw't’ + w'e”™ cosw't’)

from eq. (20) determining w’(¢'). Equation (22) reduces to eq.
(15) as R — oo. If F is contoured as a function of w’ (not shown),
the zero contours define the values of w’(¢') in eq. (21). There are
two symmetric roots w’, and the multivaluedness for about t' <
20 leads to abrupt oscillations corresponding to the motions de-
scribed by Keller (1966). Although formally acceptable for F =
0, the discontinuities violate the assumption that Fdw’/dt’ =~ 0,
for small F, and the physical validity of this solution is doubt-
ful; however, they are strong evidence that oscillations are to be
expected.

We resort to direct numerical integration. Substituting the
Fourier series (11) into eq. (6) requires for o4

d A

aéy ) — () — Rlou(t') + exp(—idh,) — exp(—ig_)
(23)

do_y(t) ., , . .

—g = W) = Rlaa(t) + expli¢) — expig-),  (24)

and the integrated form of eq. (8) is

dw'(t)

2n F
dr

+ilog(t) — a_1(1)]/2 = 2z w'() = 0. (25)

Following Malkus (1972), and writing ¢y = a, +ib,;, ¢ =,
one readily finds that the equations governing da,/d¢’, db,/dt’,
and dw’/dt’ are those of Lorenz (1963) in the chaotic regime;
here, w’ corresponds to the X variable. Tritton (1988, pp. 246—
254) has a nice account of this work, and also see Creveling
etal., (1975), Hart (1984), Erhard and Miiller (1990), Wang et al.,
(1992), and Dewar and Huang (1995) among others. Thus, this
simple loop, with thermal forcing alone, exhibits all the richness
of the Lorenz system. As this regime has been well explored,
we will not dwell on it here. The asymptotic steady states of the
F # 0 regime are the same as described above for F = 0. [The
use of heat sources in the present configuration, as opposed to an
imposed thermal boundary condition, puts a forcing term into the
Lorenz X equation, but the qualitative nature of the solutions is
unchanged. Palmer (1999) discusses some aspects of the forced
Lorenz system.]

The type 1 configuration has no direct oceanographic applica-
tion, apart from geothermal heating, but serves as a contrast to the
type 3 convective example below. A marginal type 1 application
would include the case in which solar heating penetrates signifi-
cantly below the sea surface, with ocean cooling being confined
to the surface. Geothermal heating contributes only modestly to
the ocean circulation (e.g. Adcroft et al., 2001), and we turn now
to the more important type 3 case.
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Fig 8. Temporal behavior of the solutions, started from rest, under purely thermal driving. Pr = 1, for varying values of R. The ultimate asymptote

is always to a purely thermal, steady, mode. Note the vertical scale change.

4.2. Type 3 convection

Four solutions for different values of R are shown, for Pr = 1,
in Fig. 8, when started from w’ = 0. These figures are typical
of many further examples (not shown) for varying Pr and R,
and simply demonstrate that in type 3 convection, the steady
states can be reached via oscillatory or heavily damped behavior.
Unlike type 1 convection, there is no chaotic regime and the
motions become steady for the entire parameter range with a
stable fixed point in the thermal mode.

When stress is introduced, the equation governing the transient
behavior of the thermal/stress system of the last section is

dw’

dr

2 F +ilo () —a_1(1)]/2 = 27 (w' — ') = 0, (26)
along withegs. (23) and (24). Negative 7’ values simply reinforce
the thermal mode. The most interesting case is for moderate
(relative to R) positive values of t’. For the case " = 2 in Fig. 7,
the transient behavior, starting with both w’(0) = ¢’ and w’(0) =
0, is displayed in Figs. 9 and 10, with Pr = 100. The low R
solutions oscillate, eventually converging to the small w’ roots
in Fig. 7 of the stalled mode. For sufficiently large R, however,
the asymptote is always in the stress mode, with w’ &~ t’. The
importance of stress in determining the nature of the flow is
evident.

5. Salinity, and temperature with restoring

S61 considered the situation in which both temperature and salt
driving through relaxation boundary conditions were present,

but not stress. Stommel identified the two steady states possi-
ble: a thermal mode with comparatively rapid flow at the top
from warm to cold, and the reversed ‘salinity mode’ from cold
to warm. In the present configuration, we can readily explore a
very large range of conditions in the loop, including the addition
of salt sources with and without stress, restoring in tempera-
ture or salinity or both with a variety of time-scales, parameter
ranges, and time history of the sources. The range of behavior
of the loops, with so many non-dimensional parameters, and ac-
counting for all of the possible transient behaviors, is very large,
and perhaps enlightening only in the existence of this intricacy.
Although a number of calculations were made of steady and
transient behavior in the presence of heat and salt sources, these
will be omitted here. We turn instead to the configurations in-
volving heat and salt sources, temperature restoring, and stress —
primarily to suggest the fragility of any inference about analogs
between GCMs and any particular parameter range of the loops.

The most common studies of systems such as these (including
S61) has been in the context of temperature boundary conditions
involving restoring to some form of climatology, either to mimic
a simple atmospheric feedback, or to force the system to be more
realistic if it drifts away under pure thermal flux boundary con-
ditions. With " = 0, in the absence of restoring terms, there is
only one solution type, as the co-located temperature and salin-
ity sources combine to produce a net density source. Rather than
reproduce the S61 situation with restoring in both temperature
and salinity and no sources, the sources are retained here, and
salinity is left without restoring, giving ‘mixed’ boundary con-
ditions (and the reader is reminded of the conclusions of Huang,
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Fig 9. Type 3 convection, with temperature forcing and t/ = 2. Pr = 100 in all cases, for varying values of R. Each panel, for fixed R, shows the
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solutions when the initial condition is w’(0) = 0 (solid), and the dashed line when w’(0) = t’. For sufficiently small R both solutions converge to the
stalled mode, but if started in the stress mode, oscillations about the stress mode occur prior to the transition.
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Fig 10. Same as Fig. 9, except for larger values of R. The solutions from the two different starting initial conditions converge almost immediately,
and essentially invisibly here. However, for small R, the convergence is to the stalled mode, and for large R it is to the stress mode. Note the change

in vertical scale.
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1993 concerning the importance of natural boundary conditions
on salt, i.e. for mass). The steady-state direction of flow will
be determined by the stronger of the heat and salt sources. More
generally, the presence of restoring produces a system energetics
that is very difficult to understand (taken up below), and how se-
riously any of these solutions should be regarded is very unclear.
We proceed, none the less.
Let the restoring terms in eq. (6) include 7+ defined as

o0
T (¢)= Y 8,8 =0, (27)
n=-00

where only 8., will affect the flow rate, w’. (Other terms deter-
mine the temperature distribution within the loop.) We will take
841 = £1/2i. With restoring, the Sandstrom theorem cannot be
invoked until the solution is found, as buoyancy can be provided
at all depths, depending in part on the actual flow and temper-
ature fields established. For salinity, we define a new Fourier
series

S@ =) e
5.1. Steady states

In the steady state, the Fourier coefficients for the temperature
perturbation are now

—ingy _ a—ing- /
o = : " :yy o (28)
and those for salinity are

—e-inds 4 o-ing-
Ty

Assume, for simplicity, that Ry = Ry = R. (We can readily
explore the situation when heat and salt are diffused at different
rates, but that analysis is omitted.) Then substituting into eq. (8)
and integrating around the loop produces

C12V2(R+y)+ Ry +y” V2R

D —w' 417 =0,
2 (R+y/)2+w/2 + R2+w/2 w+T
(29)

which is a quintic for w’(R) or cubic for R(w"). Consider first
y' =1, 7 =0, D = 1. The real roots w'(R’) are displayed in

Fig. 11. For large R, there is a weak thermal mode, but for small
R, three roots appear: strong and weak thermal modes as well as
a weak salinity mode. The latter persists until a transition takes
place to the high R thermal mode. The stability of these roots can
be investigated by the usual formal methods for analysis of non-
linear systems, but given the issues of realism already raised,
we will not pursue the subject here. Fig. 12 shows the three real
roots of the polynomial as a function of R for t/ = —1, y' =1,
and D = 1. With D = 1, the salt and heat sources cancel locally
in the equation of state; however, because restoring is applied
only to the temperature component of density, the salinity field
still influences the flow.

0.5

1 I L L
10°

Fig 11. Roots of the quintic eq. (29) with 7’ = 0, and y’ = 1. Stability
of these roots varies with Pr.

04
02 ;/’/_\ R
0

-04 b

Fig 12. w/'(R) for t’ = —1, y’ = 1, temperature with restoring and
Rs = R. The precise value of R (diffusion) evidently can make a large
difference to the nature of the solution. The stress attempts to drive a
thermal mode but can be overcome, at sufficiently small diffusion, by
the salinity forcing.

When t/ = —1 (Fig. 12), for large R there is only one root,
while for small R there are three roots. Thermal and salinity
modes correspond to w’ less than or greater than zero, respec-
tively. Two roots exist for the thermal mode and one for salinity.
The salinity mode is a near mirror image of the weak thermal
mode; the latter is not realizable (it is unstable). When 7’ = 2,
this situation produces three thermal modes at low R, but only a
single one at large R, asymptoting to w’ = t’ with R (not shown).

In this restoring system, the steady-state asymptotes are no
longer independent of Pr or F. The value of Pr determines
which asymptotic branch of Fig. 12 is reached for small values
of y’. For small y’, there clearly is considerable sensitivity of the
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Fig 13. Steady-state temperature distribution N
of the asymptotic value of the salinity mode

of Fig. 12. The warm abyssal ocean contrasts

with the thermal mode solutions. w’ = 0.11,

D=1,y =1,and R=0.1.
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Fig 14. Comparison of delayed onset of haline forcing. The dashed curve shows the temporal response when both heat/salt sources are turned on at
t' =0, with R =0.1, 7" = —1, and Pr = 1. The solid curve is the response when the salt source onset is delayed until # = 50. Without delayed

onset, the system oscillates and ultimately settles into a salinity mode, while delayed onset leads to a stable thermal mode.

transient behavior as a function of y’. The steady-state asymp-
totic temperature distribution of the salinity mode at Pr = 10
(independent of y) is shown in Fig. 13. The temperature and
heat flux distributions are very different from those in the ther-
mal modes (not shown).

The main message here is that an intricate set of behaviors is
possible, dependent in large part on the presence of temperature
restoring, but also on the magnitude and direction of t’. Tem-
poral behavior is a sensitive function of the non-dimensional
parameters and given the great difficulty in interpreting them in
a three-dimensional context, we will now turn to one last con-
figuration.

5.2. Delayed onset of haline forcing

Because of the widespread inference that the introduction of
fresh water into a North Atlantic-like system dominated by a
thermal mode can convert it abruptly into a reversed salinity

Tellus 57A (2005), 1

mode, with all its climate consequences, it is interesting to briefly
consider the way in which the loop models respond to the abrupt
switching on of a high-latitude freshening, and a low-level salin-
ity increase. We have already seen that for small R and 7" #
0, oscillatory states are possible. Not surprisingly, within such
states, one can have a very different outcome depending upon
where in the oscillation cycle the salinity forcing occurs.

The introduction of haline forcing into the time-dependent
system can be anticipated to introduce yet another parameter,
and many earlier results with GCMs show that the history of
the flow in part determines the result of the sudden onset of a
freshwater source. To depict this behavior in a single example,
Fig. 14 shows the case, 7' = —1,y' =1, Pr =1, R =0.1, when
the salinity sources are turned on at t' = 0, with the system at
rest, and when their onset is delayed until # = 50, at a time when
the flow has already settled down into a stable thermal mode. In
the first instance, the system oscillates before ultimately settling
into a weak salinity mode. With a delayed onset, there is a minor
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oscillation about the thermal mode, but no major change other
than an eventual slight weakening of the thermal mode state.
Depending upon precise parameter values, including the time of
onset, ¢, a great variety of behaviors is possible. (For example, if
7’ =1, choosing t'. = 50 does force the system to jump into the
haline mode.) In general, at low R, one anticipates the existence
of hysteresis effects from cycling boundary conditions, but these
effects, too, are omitted here.

Unless one were convinced of the ability to connect both the
parameter ranges and the actual physical behaviors of the loop
models with those in GCMs, there appears to be little oceano-
graphic or climatic point in proliferating examples of this type.
They are undoubtedly of interest in their own right.

6. Energetics

A considerable recent literature has collected around the ques-
tion of which external forces provide the energy to sustain the
ocean circulation (reviewed by Wunsch and Ferrari, 2004), and
resulting in the conclusion that only wind and tides are signifi-
cant. Because that inference has important implications for the
behavior of the climate system, it is thus useful to briefly consider
the energetics of the loops — if they are intended as surrogates
for the ocean.

Consider thermal and stress forcing alone (D = Sy = 0). Mul-
tiply eq. (8) by w’ for a dimensionless kinetic energy equation

P2 (v 0P + ' sing — w'T'(@)sin
— —_— = —-——Ww w Sin —w sin
ar' \ 2 b0}

_ w/z + T'w'
which, when integrated over the loop, produces
9 bg wzz e
FW Tdd) = —w’f T'(¢)sing de + 2w t'w’
—27w?, (30)
with stress providing the only external direct source term. A non-
dimensional potential energy equation is obtained by multiplying

the negative of eq. (6) by z/ = —1 + cos ¢ and integrating over
the loop. Integrating by parts where appropriate gives

0 [— /ﬂ cos ¢T/(¢)d¢>i| =w /n sin T’ (¢p) do

ot
+ R/ cos pT'(¢)dg — J// [T*(¢) — T'(¢)] cos ¢ dg
—27(cos ¢y — cosp_). 3D

Notice (e.g. Wunsch and Ferrari, 2004) that the term

w' /n singT'(¢) do,

occurs with opposite sign in the kinetic and potential energy
equations, and that its contribution to the total energy vanishes.
It represents the conversion term between potential and kinetic
energies and it can operate in either direction.

Suppose first that ’ = 0. The last term in eq. (31) represents
the direct potential energy production by the sources. For type 1
convection, ¢y > —¢ _, the contribution to the potential energy
is positive. In type 2 convection, ¢, < —¢_ and the sources
decrease the potential energy. If ¢ . = —¢ _, in type 3, this source
term vanishes, and there is no generation of potential energy by
external forcing. The balance then is between the conversion
from kinetic energy and its removal by diffusion.

Because

3 T
— T'(¢)d¢ = 0,
or ) (¢)do
there is no net generation of internal energy.
In a steady state, we have the balance of kinetic energy

—w / singT'(¢p)d¢p + 27 7'w’ = 2mw’, (32)

T

of potential energy

w' /ﬂ singT'(¢)d¢ = —R /n cos ¢T'(¢)dg, (33)
and of total energy

b
2rt'w’ =27w” — R / cos T'(¢) dep. (34)
-

When t’ = 0, the only way to provide an energy source to bal-
ance the frictional dissipation term, 277 w'2, is by the generation
of potential energy from diffusion, consistent with the Sand-
strom theorem. Diffusion, as has already been seen, can act ei-
ther to increase or to reduce the flow, depending upon the sign of
cos ¢T'(¢), that is, determined by its mean behavior above and
below the center line, ¢ = +m /2.

Equation (34) suggests a possible parametrization of diffusion
in terms of stress. If it is assumed that the mechanical dissipation
in the system remains fixed as in Huang (1999) — the justification
for this assumption is not very clear, but neither is the usual
alternative of constancy of kg — assuming Kkt = ks = Kk, we
have

2nt'w + Rlk(z))] /” cos ¢T'(¢) d¢p = constant. (35)

More generally, ocean models need to begin the parametrization
of mixing coefficients as functions of the externally applied me-
chanical driving, «(z’, n), where n represents tidal amplitudes
and mixing (see, for example, Wunsch and Ferrari, 2004), which
are in turn functions of the oceanic geographic configuration.
The nature of this parametrization is the focus of much ongoing
work (e.g. Jayne and St. Laurent, 2001). Discussions of mixing
parametrized in terms of wind stress can be found in Oberhuber
(1993) and McDougall and Dewar (1998).

When temperature restoring is reintroduced, the energy dis-
cussion becomes more complicated. For type 3 convection,
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eq. (31)is
B

2 [_ f ) cos¢T/(¢)d¢>] — / " sin¢T'(¢) do

—(R+y) [ cos¢pT'(¢)d¢ — 7/'/ cos T *(¢) dgp,

-7

and the total energy balance is

9 b4 , b4 w/2 ,
%[—/ cos¢T(¢)d¢+F/ 5 dd>:|=(R+y)

></ cos¢T/(¢)d¢+)/// cospT *(¢) do

+omt'w — 2mw”. (36)

The externally imposed temperature, 7"*, can be a potential (and
total) energy source or sink, again depending upon its behav-
ior relative to the horizontal center line. Imposed average warm
temperatures, T/*, above the center line, increase the potential
energy, while negative ones decrease it. The component of 7"
proportional to sin¢ that contributes to the torque contributes
nothing to the potential energy. In the steady state, total energy
balance is

2rt’'w — ' /ﬂ cospT *(p)dp = —(R + )

e

x /n cos T () dgp + 2 w?,

T

and restoring in general has a complicated influence on the en-
ergy budget — introducing a physical balance not possible with
sources. As demonstrated by the explicit solutions above, the pre-
cise form of restoring in nature, and its numerical magnitude, can
greatly affect the possible modes of flow; consequently, the phys-
ical basis for the introduction of this extra energy source/sink
needs to be carefully justified. As we have seen with compen-
sating temperature and salinity forcing, the existence of a flow
in the absence of stress depends completely upon the non-zero
restoring. Its energetics are obscure.

The simple conclusions possible here are that in type 3 con-
vection characteristic of the ocean, and in the absence of stress
forcing, the entire motion derives its energy from diffusion. If
diffusion is molecular, the ultimate source is the internal energy
at the molecular level. If diffusion derives from a parametrized
turbulence, then there is a hidden external source of energy
driving that turbulence, and the system is not closed. Restor-
ing introduces another covert energy source whose magnitude
and sign are difficult to determine without solving the problem
completely.

7. Analogs in three dimensions?

Many additional complications can be introduced into the loop
geometry. One of the more physically plausible ones consists
of permitting a throughflow (Mertol et al., 1981), that tends to
stabilize the flow, and which perhaps is an analog of an oceanic
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interbasin exchange. However, a point of diminishing returns has
probably been reached.

The question of the extent to which S61-like solutions are
seen in more complex flows has been discussed by Thual and
McWilliams (1992) for a non-rotating two-dimensional model,
and by Cessi and Young (1992) in a discussion of the former pa-
per. The latter authors used a perturbation expansion in the verti-
cal aspectratio, for the high diffusion limit (‘amplitude equation’
approach). Cessi and Young (1992) successfully identify multi-
ple stable states in their approximate solution corresponding to
those appearing in the Thual and McWilliams (1992) full equa-
tion solution, and further identify them with the S61 states. The
extension of this study to three dimensions does not appear to
have been undertaken yet, and may not be possible. [In gen-
eral, there appears to be little guidance available in the fluid
dynamical literature concerning the relationship between one-
and two-dimensional, or two- and three-dimensional (in space)
flows. A limited exception is the Squire theorem (e.g. Kundu,
1990, p. 389) for shear flows, showing that there is no three-
dimensional disturbance more unstable than the most unstable
two-dimensional one, and hence that the stability analysis can
be confined to two dimensions.] Arguments attempting to con-
struct analogies between two- and three-dimensional systems
have been given, for example, by Thual and McWilliams (1992)
and Wright et al. (1998). Dijkstra and Weijer (2003) show some
similarity between low-dimensional models and the bifurcations
of alimited region 4° resolution GCM; numerous differences and
exceptions do however occur, and such models do not resolve
the very important boundary currents of the ocean.

Given the intricate behavior of the loop, and its dependence
not only upon R, Rg, and F, but also upon D, t/, y', and t'., the
ability to identify any particular instability, oscillation, or bifur-
cation in a GCM (which will have many more parameters and
three space dimensions, and hence enormously more degrees of
freedom of movement) could only be done at the expense of a
very long and careful analysis. The much larger number of kine-
matic and dynamical pathways available in a three-dimensional
rotating flow relative to any one- or two-dimensional represen-
tation suggests that bifurcations, time histories, and response to
external disturbances, in general, may be very different. Type 3
convective loops or the loop—Stommel box model special case
are best considered as metaphors for the circulation, not as the
circulation itself. Many, but far from all, of the same operative
controls are present, but in the absence in the loops or box mod-
els of the complex pathways available to the general circulation,
and because of the great parameter sensitivity manifested in this
one-dimensional case, any inference of like-behavior should be
regarded warily. Whether the motions in the two different dimen-
sions are truly analogs of each other remains undemonstrated,
and a certain skepticism should be retained.

Maas (1994) has taken a different approach to producing an
internally consistent model representing S61. For a non-rotating
or f-plane ocean, he writes equations for the integrated angular
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momentum balance under a wind-stress torque, and for the net
meridional density gradient with temperature restoring. When f
vanishes, he recovers the Lorenz system; with f # 0, but with
some further approximation, his system reduces to that of Lorenz
(1990). Much of the behavior he deduces, with no salinity forc-
ing, is consistent with that seen here. However, we remain far
from a system with, for example, the critical effects of d f/dy
producing boundary currents and the geostrophic vorticity bal-
ance that appears so fundamental to the actual ocean circulation.

A freshwater cap on the North Atlantic is widely accepted as
the most direct means of reducing the meridional mass overturn-
ing, as discussed recently by Manabe and Stoufter (1999), Wun-
sch (2002), and Nilsson et al. (2003) among many others. In nu-
merous papers, the S61 model is used to rationalize the response
of GCMs. In the absence of an analysis showing a deduced con-
nection between the structure and stability of a three-dimensional
flow and that appearing in the one-dimensional loops, great
care needs to be exercised in analogizing the former by the lat-
ter, especially when concerned with the response to external
disturbances.

8. Summary

The one-dimensional loop geometry lends itself to the production
of a simple example of the implications of the Sandstrom theo-
rem. When used with pseudo-salinity boundary conditions, it can
mimic the behavior of the S61 and Stommel and Rooth (1968)
box model, which is itself a form of loop model, albeit with an
awkward specification of infinite and zero mixing rates. The loop
geometry exhibits delicate dependences upon numerous non-
dimensional parameters, both in its mean and transient states.
Much of the appeal of loops and box models has been the suppo-
sition that they are at least qualitative, and perhaps quantitative,
representations of far more complex higher-dimensional sys-
tems. The number of degrees of freedom in a three-dimensional
model, even in a laminar regime is, however, orders of magni-
tude greater than in a one-dimensional fluid. A general theory
permitting construction of correspondences between GCM non-
dimensional parameter ranges and flow elements, and those in
one dimension, would obviously be highly welcome, if such cor-
respondences are possible. Low-dimensional non-linear systems
frequently produce more exciting behavior than highly multidi-
mensional systems like a GCM. Whether existing GCMs are
themselves any more than a rough metaphor for the actual cir-
culation is another open question.
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