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1. Introduction

The intense interest in possible climate change has
led to increasing scrutiny of relatively long time se-
ries for indications of secular trends in climate indi-
cators. Changes in mean levels of simple fields such
as temperature, or shifts in the apparent return times
(or oscillation periods) of various phenomena such as
the El Niño–Southern Oscillation (ENSO) or the North
Atlantic oscillation (NAO), have all been discussed.

But purely random processes, particularly those
that have even mildly “red” spectra, have a behavior
that comes as a surprise to many, and there is great risk
of misinterpretation. That is, the purely random

behavior of a rigorously stationary process often ap-
pears visually interesting, particularly over brief time
intervals, and creates the temptation to interpret it as
arising from specific and exciting deterministic causes.
The issue is related to the often unintuitive behavior
of systems undergoing random walk (e.g., Feller 1957;
Hasselmann 1977; Frankignoul and Hasselmann 1977;
Wunsch 1992).

There is nothing here that will be regarded as new
by practitioners of time series analysis in a wide geo-
physical context (this paper started out as a classroom
note). My intention is to simply introduce a bit of cau-
tion into an important discussion of the behavior of
climate signals.

In what follows, I explore some of the behavior of
the simplest of all time series, those that have a nor-
mal probability density and are stationary (i.e., hav-
ing statistics that do not change in time). Here
“wide-sense stationarity,” requiring only that the first
and second moments be time independent, is adequate.
Climate surely exhibits nonstationary, nonlinear/
nonnormal behavior, but one should be very careful
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ABSTRACT

This pedagogical note reminds the reader that the interpretation of climate records is dependent upon understanding
the behavior of stochastic processes. In particular, before concluding that one is seeing evidence for trends, shifts in the
mean, or changes in oscillation periods, one must rule out the purely random fluctuations expected from stationary time
series. The example of the North Atlantic oscillation (NAO) is mainly used here: the spectral density is nearly white
(frequency power law ≈ s−0.2) with slight broadband features near 8 and 2.5 yr. By generating synthetic but stationary
time series, one can see exhibited many of the features sometimes exciting attention as being of causal climate signifi-
cance. Such a display does not disprove the hypothesis of climate change, but it provides a simple null hypothesis for
what is seen. In addition, it is shown that the linear predictive skill for the NAO index must be very slight (less than 3%
of the variance). A brief comparison with the Southern Oscillation shows a different spectral distribution, but again a
simulation has long periods of apparent systematic sign and trends.  Application of threshold-crossing statistics (Ricean)
shows no contradiction to the assumption that the Darwin pressure record is statistically stationary.
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before rejecting, on the basis of visual intuition, the
null hypothesis of stationarity. In particular, distin-
guishing nonstationarity (which many have sought to
display in the present climate system) from nonnor-
mality is extremely difficult.

2. An example: Weakly red noise

Let z
t
 be the so-called NAO index, here taken to

be the atmospheric pressure difference between
Lisbon and Iceland averaged over the winter months
(December–March) and displayed in Fig. 1. The in-

terval covered is 133 yr: 1864–1996 (see Hurrell 1995;
Goodman 1997). Also displayed is a filtered version
of z

t
 with energy at periods shorter than 4 yr having

been removed. There are intervals, most clearly vis-
ible in the filtered time series, of extended residence
both above and below the mean, and a period, particu-
larly since about 1960, of an apparent trend.

The estimated power density spectrum Φ (s) as a
function of angular frequency s for z

t
 computed using

D. Thomson’s multitaper method (see Percival and
Walden 1993) is shown in Fig. 1. The spectrum is very
weakly red, increasing slowly with increasing period,
with a slight, but apparently statistically significant,
structure. The variance of z

t
 is σ 2 = 3.8 mb2. A least

squares fit produces a power law,

Φ(r) (s)  ≈ 0.66s−0.22 mb2/cycle/yr, (1)

in the range shown on the figure. There are weak struc-
tures in the range of 8–10 yr and near 2 yr. Note that
most of the energy in such a record occurs at the high-
est frequencies, a behavior obscured by the logarith-
mic frequency scale used to plot the power density
spectral estimate.

The exploration strategy here is to produce artificial,
statistically unchanging time series whose power den-
sity spectra are consistent with what is observed for the
NAO and to examine the way such time series behave
over time.1 Let us examine the behavior of a sequence
of values, y

t
, whose spectral density is given by (1). Four

133-yr intervals chosen arbitrarily from within a longer
time span from the resulting time series can be seen in
Fig. 2. It was confirmed that the result did have a power
density spectrum, within expected confidence limits, of
Φ(r) (s). Similar, but different, simulations have been
published by others for the Southern Oscillation (SO);
these are discussed briefly at the end.

FIG. 1. (top) Solid line is the winter-average Lisbon minus
Iceland pressure difference from 1864 to 1996, z

t
 (Hurrell 1995;

Goodman 1997), here called the “NAO index.” Dashed line is
the running 4-yr averaged values (as obtained from an eighth-
order Chebyshev filter). The latter spends extended periods
above (e.g., about 1968–95) or below (e.g., 1950–67) the mean.
The shift between these two states might be interpreted as a trend;
whether it is truly secular in nature remains to be seen. (bottom)
Multitaper spectral density estimate (Percival and Walden 1993)
Φ (s) as a function of angular frequency s of the data in Fig. 1a.
This and other 95% confidence intervals are the mean interval
for all the spectral estimates, the procedure being an adaptive
one. The dashed line showing an average power law behavior
was obtained from a simple least squares fit. Because of the loga-
rithmic frequency scale, most of the record energy lies at the
high-frequency end of the scale.

1A zero-mean time series of duration 4096 “years” was generated
by synthesis of the Fourier series,
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 assure wide-sense stationarity.

Confirmation of stationarity, and that the appropriate spectral den-
sity is reproduced, can be simply obtained by considering the be-
havior of the autocovariance < y

t
y

q
 > (see Percival and Walden

1993). A unit time step, t = 0, 1, 2, . . ., is used.
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Because of the visual noisiness of the result, Fig. 2
shows four subintervals of 133 yr of the time series
filtered so as to remove all energy at periods shorter
than 4 yr. Notice that there are again extended peri-
ods when the filtered time series is resident far from
the zero mean. Such a result, in isolation, could easily
be interpreted as representing a new climate state. To
the extent that the NAO index produces like behav-
ior, the weather and climate of western Europe would
be substantially different. The simulation shows, how-
ever, that there need not be any specific cause for this
shift; it is merely the expected behavior of a weakly
red noise process and has no “cause” any more than
does a sequence of rolls of dice that produces a statis-
tical excess of the value six.

Results such as those shown in Fig. 2 can be stud-
ied analytically, a subject that has a large literature, of-
ten traced back to the classic paper of Rice (1945). For
example, Vanmarcke (1983, chap. 4) has a discussion

of expected time series excursions for Gaussian pro-
cesses. Claims that one has entered a new climate state
because of extended excursions away from the mean
need to be tested against the null hypothesis that the
extreme duration is expected to occur by chance at
some particular confidence level. Some of the ideas
emerging from Ricean statistics will be explored
briefly at the end.

3. Example with the structured
spectrum

Figure 1b indicates that there are weak structures
(calling them “peaks” seems too strong) in the spec-
trum of the actual NAO index. Although the amount
of energy lying in the frequency bands of the struc-
tures is not very large, less than about 10%, it seems
worthwhile to generate time series with the full
spectrum Φ (s). Another time series, y

t
, was produced

as above except for use of the numerically specified

FIG. 2. Simulated data, having a red noise spectrum propor-
tional to s−0.22 with the same variance as z

t
, plotted in four sections

of 133 yr each (solid line). The dashed line shows the 4-yr aver-
age time series obtained with filtering identical to that applied to
z

t
. As in Fig. 1b, there are extended periods in which the filtered

values remain far from the mean (e.g., about 1570–1620, in the
first panel, or 2055–90 in the second panel).

FIG. 3. Simulated data, with a spectral density equal to the full
curve in Fig. 1b, both unfiltered (solid) and filtered. There are again
periods of a single sign in the filtered data and even of local trends
(e.g., about 1570–85).
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spectral density in Fig. 1. Figure 3 again shows arbi-
trary 133-yr records with a similar behavior of ex-
tended excursions from the mean and local apparent
trends.

Using Fig. 3, we can locate regions in which the
character of the high-frequency oscillations appears
to change, for example, in the two 20-yr periods be-
ginning around the year 3000 in which an interval of
high-frequency dominance gives way to one of appar-
ent low-frequency dominance. (One can count peaks
in the various 20-yr blocks to obtain such indicators.)

Hurrell and van Loon (1997) displayed a so-called
spectrogram for z

t
 (the spectral density computed in a

sliding 60-yr window starting in 1865–1924 and end-
ing with 1935–94) and suggested that the NAO spec-
trum had become redder in recent years. Here, an
arbitrary 133-yr period was used to compute a simi-
lar set of estimates for y

t
. The result is shown in Fig. 4.

Consider the frequency range from about 0.2 to
0.3 cycles yr−1. In that band, the energy level changes
by about a factor of 4 from the 60-yr intervals at the
beginning of the 133-yr period to the ones near the
end. Factor of 2 changes are also seen, for example,
near periods of 2 yr (0.5 cycle /year−1) where these
oscillations appear unusually energetic around
the 40th interval. A similar behavior is seen near
0.04 cycles yr−1 (25-yr period). Again, the time series
was statistically stationary, and these fluctuations have
no physical cause other than random superposition;

neither is there any significance to the particular fre-
quency ranges where they have appeared.

One must also be wary of apparent trends. For
example, the interval in Fig. 3 from about 3020 to 3050
could look to an observer with a short record as indi-
cating a general decline in the NAO index. The much
longer synthetic record shows, however, that it is noth-
ing but the swing expected of a stochastic process.

4. Prediction

If the NAO process is essentialy linear, then the ex-
tent of its predictability can be understood in an el-
ementary way from its spectral density and the theory
of discrete Wiener filtering (see Levinson 1947;
Claerbout 1976). Write

z a at k
k

K

t k= =
=

−∑
0

0 1θ , , (2)

where θ
t
 is a stationary, zero mean white noise pro-

cess of variance < θ 2
t
 = σ2

θ and a
k
 is a special, specific,

deterministic sequence. This “predictive decomposi-
tion” for the NAO can always be constructed, and it
permits one to make a best prediction one time step
(here 1 yr) in the future. Equation (2) is a special case
of a so-called moving average (MA) process, and it can
be easily converted, see, for example, Box et al. (1994),
into a corresponding autoregressive, or autoregressive/
moving average (ARMA) process. Because

z at t k
k

K

t k+ +
=

+ −= + ∑1 1
1

1θ θ (3)

by Eq. (2), and θ
t+1

 is unknown and unpredictable, the
best prediction is

~ ,z at k
k

K

t k+
=

+ −= + ∑1
1

10 θ (4)

with expected error (see appendix)

< − > = < > =+ +(~ ) .z zt t t1
2

1
2 2θ σ θ (5)

If z
t
 is itself white noise, only a

0
 is nonvanishing. A

structured covariance produces larger K and hence

FIG. 4. Power density spectrum for successive 60-yr periods,
each shifted by 1 yr relative to the previous, from an arbitrary
133-yr segment of the realization of z

t
. Here the frequency scale

is linear as are contour intervals in units of mb2 /cycle /yr−1. [The
time axis has the opposite sense of that of Hurrell and van Loon
(1997), but because z

t
 is stationary the change makes no difference.]
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larger predictive skill. Although we have not made a
full attempt to determine the best value of K, a rea-
sonable estimate is K = 2. Note that if z

t
 is actually

white noise, then the standard error of r
k
 is about

±1/(133)½ = .09 (Jenkins and Watts 1968), a thresh-
old (Fig. 5) that is only marginally reached (at about
67% confidence) between lags of 5 and 10 yr. Further
increases in K lead to spurious skill, dependent upon
covariances statistically indistinguishable from zero.
With a 2-yr lag time, that is, with a knowledge of z

t
,

z
t−1

, z
t−2

, one has a predictive skill of 3.5% of the total
NAO variance, shown as the prediction error in Fig. 6.
Even if one made the extremely optimistic assump-
tion that the lag-19 covariances were nonzero, the skill
is little more than 10% of the total variance.

This calculation refers only to self-prediction and
does not disprove the possibility that some other
variable could forecast it with greater skill. It also does
not prove that there is no significant nonlinear pre-
diction possible (and the frequency function for z

t
 ap-

pears to be somewhat non-Gaussian). Specific
wavenumber bands or other spatial structures (e.g.,
EOFs) in the NAO might be more predictable, but
these would necessarily have only a fraction of the
total NAO energy, and the present result is discour-
aging. Other measures of predictive skill can be de-
veloped, but it seems unlikely they will produce
qualitatively different results.

5. Visual correlations

One often sees discussions of apparent visual cor-
relations between two or more climate time series. One
must be extremely careful not to be misled by oscilla-
tions that are merely the happenstance of random vari-
ability and imply no causal connection at all. The
human eye developed to find patterns in nature; it
sometimes sees patterns where none exist. Red noise
(strongly autocorrelated) processes are particularly
prone to generating oscillations that to the eye look
related. Pittock’s (1978) review of repeated attempts
to demonstrate the existence of sunspot cycles in an
endless list of physical phenomena is a sobering re-
minder of the consequences of seeking too hard for
what one wishes to find.

Consider two time series,

x
t
 = ax

t−1
 + θ

t
,  y

t
 = by

t−1
 + η

t
. (6)

Here a, b are fixed numbers, such that |a|, |b| < 1, and
θ

t
, η

t
 are white noise processes such that < θ

t
 > = 0,

θ
t
θ

t′  > = σ2
θδtt′ , < η

t
 > = 0, < η

t
η

t′ > = σ2
ηδ

tt′ , < θ
t
η

t′ > =
0. The restrictions on a, b render x

t
, y

t
 stationary.

[Technically, x
t
, y

t
 are autoregressive processes of or-

der 1, denoted AR(1).] Two such time series were gen-
erated (Fig. 7) with a = 0.999 and σθ = 0.1, b = 0.95,

FIG. 5. Autocorrelation (normalized to 1 at zero lag) for z
t
. The

large value at the origin, followed by the rapid drop at lag 1 and
beyond is indicative of the near-white spectral density.

FIG. 6. Estimated prediction error variance σ 2
θ as a function of

largest lag, K for the NAO index. The probable best estimate is
K ≈ 2, suggesting that only 3%–4% of the index variance is pre-
dictable by linear means.
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and σ 2
η = 1. Because the two noise processes were

independently generated, x
t
 and y

t
 are rigorously

uncorrelated.
Both processes are red noise at high frequencies,

with x
t
 becoming nearly white at periods longer than

about 1000 time units, not unlike some geophysical
processes. Here y

t
 has much more high-frequency

energy than x
t
 and was thus averaged over 40 time

steps before plotting to render its low frequencies vis-
ible. Three thousand values of the resulting time se-
ries are displayed in Fig. 7a. One might be tempted to
conclude that the two time series are related in the time
span from about 4000 to 5500.

In the example in Fig. 7a, the two time series were
deliberately given different spectral structure. If they
are rigorously uncorrelated, but AR(1) with the same
structure (i.e., a = b, ση = σθ), one can obtain results
such as in Figs. 7b,c with visually striking apparent
co-oscillations, which occur by pure chance. Jenkins
and Watts (1968, 338) discuss the sample statistics of

the cross covariance of two mutually uncorrelated, but
individually autocorrelated, time series, and the gen-
eral topic is given the label “Slutsky–Yule effect” by
Kendall and Stewart (1973, 392). Many investigators
further compound the difficulty by visually shifting
two processes relative to each other in the time
domain, and then interpret the shift as an indication
of a physical time lag in the system. The opportunity
for false positive results is then greatly further en-
hanced. Proper statistical analysis tools (coherence
analysis, etc.) that the textbooks discuss would prevent
one from falling into the trap of imputing relationship
where none exists.

6. Comparison to the Southern
Oscillation

The SO and its trends through time have recently
been the subject of published debate between

FIG. 8. (top) The Darwin pressure anomaly time series [p
D
 (t)

as an annual average and as a running 4-yr average from 1876
to 1997. The pressure minimum that occurred in early 1998 (not
shown) is close to, but no smaller, than some of the extremes oc-
curring previously in this record. (bottom) Spectral density esti-
mate for annual average Darwin pressure. In contrast to the NAO
record, here most of the energy lies in the vicinity of the weak
spectral maximum centered near a 4-yr period. An approximate
mean 95% confidence interval is shown.

FIG. 7. (a) Two rigorously uncorrelated AR(1) processes x
t
, y

t
,

the parameters having been described in the text. Here, y
t
 was fil-

tered prior to plotting to remove much of the high-frequency en-
ergy. (b) Portion of the time history of the behavior of two
rigorously uncorrelated AR(1) processes, which have identical
parameters. (c) Expanded version of (b).
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7. Result from threshold crossing
statistics

Threshold-crossing statistics and the statistics of
extremes provide powerful tools for studying the prob-
ability that some event has occurred by chance or
whether the probability appears so low that one needs
to invoke a changed physical situation. The following
is adapted from Vanmarcke (1981); Ponte (1986) pro-
vides a summary in the El Niño context. The wider
literature is very large.

Here we will sketch a few results, focusing on the
Darwin pressure series p

D
 (t). Figure 10 redisplays the

annual average p
D
 (t) and the 4-yr average p

D4
 (t) from

1876 to 1997 along with two pairs of horizontal lines
denoting the one and two standard deviation limits. To
qualitatively understand whether the positive values of
p

D
 (t) in the early 1990s are to be expected from a sta-

tionary, Gaussian time series, we will apply some of
the machinery summarized by Vanmarcke (1981),
without, however, providing a derivation.

Define the spectral moments, λ
k
, of the power den-

sity spectrum of p
D
 (t) as

λ ω ω π ωk
k d k= ( )( ) =

∞

∫ Φ 2 0 1 2
0

, , , ,K. (7)

Note the use here of radian frequency. A “spectral
bandwidth” is

2I am using the term nonparametric in its spectral analysis sense
of an ordinary Fourier component basis. This usage contrasts
with parametric methods relying upon, for example, ARMA-type
representations leading to maximum entropy and other spectral
methods.

Trenberth and Hoar (1996, 1997), Harrison and Larkin
(1997), Rajagopalan et al. (1997), and others and there
is no need to repeat the details of those studies.
Nonetheless, a brief comparison of the NAO spectral
structure with the SO is interesting and perhaps use-
ful. Although the Southern Oscillation index (SOI) is
commonly used to measure the SO, Trenberth and
Hoar (1997) regard it as unreliable prior to 1935. We
follow their lead and use Darwin pressure anomaly,
p

D
 (t), as a surrogate, although the simulations de-

scribed below were very similar when done for the
SOI [Trenberth and Hoar use −p

D
 (t)]. The top panel

of Fig. 8 displays both p
D 
(t) as an annual average and

(dashed line) its 4-yr running average. The bottom
panel of Fig. 8 depicts the spectral density estimate
of p

D
 (t) using the full record.

The SO spectral density is much redder than that
of the NAO in the period range between about 1 and
4 yr. A broad peak centered near 4 yr is statistically
significant and is an indicator of ENSO. Below the
ENSO peak, the spectral density is indistinguishable
from white noise. The crux of the debate over the SO
alluded to above concerns the extended period of posi-
tive anomaly in the early 1990s and whether such an
extended duration is indicative of a climate shift.
Trenberth and Hoar (1996) generated an ARMA simu-
lation of the SOI. Here for consistency with the
discussion of the NAO, I will again use the nonpara-
metric2 model (see footnote 1) to generate a time se-
ries with the spectral density of the bottom panel of
Fig. 8. The results for two arbitrary 120-yr intervals
filtered to 4-yr averages are shown in Fig. 9. Although
we will not dwell on it, it appears that sustained in-
tervals of positive (e.g., years 3025–3085) and nega-
tive (3950–4000) values occur by chance, consistent
with the inferences of Rajagopalan et al. (1997) and
Harrison and Larkin (1997). The specific ARMA
model of Trenberth and Hoar (1997) is probably too
great an underparameterization of the time series (i.e.,
not sufficiently structured). They maintain, however,
that the magnitude of the recent excursion of the SO
is inconsistent with stationarity, and we will reex-
amine that conclusion in a different way in the next
section.

FIG. 9. Two 122-yr intervals of simulated p
D
 (t) obtained from

the observed spectral density estimate. Sustained intervals of
dominantly positive and negative values and of apparent trends
are clear.
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ε
λ λ
λ= −









1 2

2

0 4

1
2

. (8)

Based upon this bandwidth and the Gaussian
assumption, it is possible, among a number of prop-
erties, to calculate the mean interval between
upward crossings of a threshold. The expression
[Vanmarcke’s Eq. (4.4.5)] depends upon the spectral
moments only (not the detailed spectral shape) and the
statistics of dp

D
/dt as derived from the spectral mo-

ments. We find for p
D
 (t) that the expected time inter-

val to cross 2σ = 1.4 mb is about 30 yr, implying about
four crossings in 122 yr. The expected time to remain
above the 2σ threshold is about 0.7 yr. The top panel
of Fig. 10 shows that in the 122 yr of the record, p

D
 (t)

crosses this threshold twice and just touches it twice.
If we assign the touching points as threshold crossings,
there is complete consistency with the expected rate.
That the expected time above the threshold is less than
a year is also consistent with these results. [Omission
of the last seven values of p

D
 (t), during the 1990s, in

the spectral moment calculation makes no significant
difference in the numbers.]

If the same expressions are applied to p
D4

 (t), the
expected 2σ crossing interval is about 110 yr with an
expected residence time of 2.5 yr. Figure 10 suggests
that the single occurrence, toward the end of the record,
is consistent with this behavior. One might regard it
as peculiar that the extreme event occurred close to the
end of the observation period, but there is no gainsay-
ing that the behavior seems consistent with the theory.
Grove (1998), assuming Asian monsoon behavior is
a valid ENSO proxy, shows that events as extreme as
the recent one have occurred in the past. It is charac-
teristic of systems with long memory that larger de-
viations from the mean are expected as the record
length grows (Feller 1957). Consequently, insofar as
these tests are concerned, we have no evidence that the
behavior of the SO is in any way surprising in the
1980s and 1990s, consistent with the conclusions of
Harrison and Larkin (1997) and Rajagopalan et al.
(1997). Again, as above, this result is not proof that a
change in statistics did not occur, it is only an indica-
tion that the data do not appear to require such a con-
clusion; this distinction is an important one.

This discussion is not complete; there is much
more that can be done with the known machinery of
the statistics of extremes and of threshold crossings,
including accounting (see the next section) for possible
deviations from a normal probability density. An ex-
tended study of the Southern Oscillation is, however,
beyond our intended scope.

8. Nonnormal statistics and
nonstationarity

The assumption that the underlying statistics are
nonnormally distributed introduces large new possi-
bilities for seemingly bizarre behavior of even station-
ary time series, particularly if the new probability
density has long tails. [Thomson (1995) has demon-
strated convincing, but very subtle, nonstationarity in
the periodic (nonstochastic) components of long cli-
mate records through the use of demodulation and
jackknife techniques.] Consider the Gaussian time
series in Fig. 11a; here x

t
 was produced as a simple

AR(1) time series with parameter a = 0.999. Any non-
linear transformation of x

t
,

y
t
 = g (x

t
), (9)

will render the statistics of y
t
 nonnormal. As one

simple example, Fig. 11b displays the result if taking

FIG. 10. (top) Annual average p
D
 (t) replotted from Fig. 8a, with

horizontal lines showing the one and two standard deviation lim-
its, σ and 2σ. (bottom) The same as top panel except for the 4-yr
values, p

D4
 (t).
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y
t
 = x3

t
/1000. The reader can readily

confirm that the frequency function
for x

t
 is transformed into a new fre-

quency function for y
t
 that has much

larger probabilities of extreme values.
In particular, the “event” near t = 1300
is the result of such an occurrence.
Without a study of the statistical prop-
erties of y

t
, one might be tempted to

conclude that some nonstationary be-
havior was taking place; but because
of the way the time series was gener-
ated, we know it to be stationary, and
we are seeing a manifestation of
nonnormal statistics. Threshold-
crossing statistics will be modified in
the presence of such nonnormal be-
havior. [The reader who regards
Eq. (9) and the behavior seen in
Fig. 11 as extreme is reminded that
many time series measurements have
this visual appearance. One oceano-
graphic example, from a current
meter, is shown in Fig. 4 of Wunsch
(1997), and it is widely recognized
that physical processes such as tropical rainfall records
have long-tailed probability distributions.]

A further important point is that nonstationarity by
itself need not imply any change in physics (empha-
sized by Stephenson et al. 1999). So-called autore-
gressive integrated moving average processes (see Box
et al. 1994) generate nonstationary sequences for fixed
parameters. The simplest such process is

x xt t t= +−1 θ , (10)

where θ
t
 is again white noise and whose variance

grows with time. The rule (10) is closely connected
to the fascinating “game of Peter and Paul,” which is
analyzed by Feller (1957).

9. Some concluding remarks

Undoubtedly the real climate record contains
physically significant trends and changes in spectral
shape or energy levels. Two visually but statistically
insignificantly correlated climate records may well be
linked in a causal manner. Caution is required,
however: short records of processes that are even

slightly reddish in spectral character can easily lead
to unwarranted, and incorrect, inferences if simple
stochastic superposition is confused with determinis-
tic causes. As examples of the care required to draw
definite conclusions about nonstationary behavior, see
the studies by Thomson (1995, 1997). Sometimes
there is no alternative to uncertainty except to await
the arrival of more and better data.

Published inferences about a recent change in cli-
mate state appear very fragile. Nonetheless, even if no
such changes have occurred, there is still much to un-
derstand about the existing climate system. For ex-
ample, the weakly red nature of the NAO spectrum
does produce some simple linear predictive skill; the
origin of this “red” behavior and of the superimposed
spectral structures needs explanation. Even if under-
standing does not necessarily lead directly to useful
predictive skill for the NAO, it could still shed con-
siderable light on the behavior of the coupled ocean–
atmosphere system.

Similarly, the recent behavior of El Niño admits
the possibility that at least some of this phenomenon
is an oceanic response to purely stochastic atmo-
spheric forcing. Ponte’s (1986) discussion is along
these lines, and recent papers by Blanke et al. (1997)
and Eckert and Latif (1997) (or see the review by Latif

FIG. 11. (a) Normally distributed, autoregressive process, x
t
 = 0.999x

t−1
 + θ

t
. (b)

Nonnormally distributed process y
t
 = x3

t
/1000. The apparently nonstationary visual

behavior arises because of the non-Gaussian statistics; the time series itself remains
stationary.
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et al. 1998) lend support to the notion that one must
understand possible random walk behavior before
inferring that deterministic physical changes have
occurred.

Nothing said here should be taken as support for
an inference that climate change has not occurred nor
will occur in the future. The political problem is one
of risk assessment in the presence of great uncertainty.
Both political and scientific progress are more likely
if one is careful about what is definitively known as
opposed to what are reasonable assumptions.

Acknowledgments. This research was supported in part by a
grant from the National Science Foundation. I thank Jason
Goodman for giving me the NAO time series and D. E. Harrison
for the SO time series and discussion of these results. Comments
by C. Frankignoul, D. Stephenson, and D. Schrag were very help-
ful. Contribution to the World Ocean Circulation Experiment.

Appendix: Prediction Error Filter

One can define a convolution inverse, b
k
, to a

k
 in

the sense

a b bk
k

K

t k t
=

−∑ = =
0

0 0 1δ , .

Sequences a
k
, b

k
 that are stable and have each other as

one-sided convolution inverses, are known as “mini-
mum phase” sequences. It is an easy matter to show
that b

k
, known as the prediction error filter, satisfies

the equations

Rb = d,

and d is found from b.

Here

R =



















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





−

−

− −

r r r r

r r r r

r

r r r

K

K

K K

0 1 2 1

1 0 1 2

0

1 2 0

O

is the Toeplitz matrix of the autocovariance r
k

= < z
t
z

t+k
 >, d  = [ σ 2

θ  0  0…0]Τ. In practice, the

autocovariances are estimated from the data (Fig. 5),
and the determination of K must be part of the solu-
tion itself. By the Wiener–Khinchin theorem, rτ is the
Fourier transform of Φ (s). If z

t
 were white noise, then

r
k
 = 0, k ≠ 0, and of necessity σ 2

θ = σ 2, that is, the pre-
diction error would be the same as full variance of the
NAO. It is only to the extent that Φ (s) is nonwhite
that one has any linear predictive skill.
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