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Abstract The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the
deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed
“upstream” (by planktonic foraminifera) and “downstream” (by benthic foraminifera) to constrain how
tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that
circulation. A history of ML equilibrium calcite 𝛿18O (𝛿18Oc) spanning the last deglaciation is inferred from a
least-squares fit of eight benthic foraminiferal 𝛿18Oc records to Green’s function estimated for the modern
ocean circulation. Disagreements between this history and the ML history implied by planktonic records
would indicate deviations from the modern circulation. No deviations are diagnosed because the two
estimates of ML 𝛿18Oc agree within their uncertainties, but we suggest data collection and modeling
procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML
𝛿18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional
high-resolution planktonic records constraining these regions are of particular utility. Benthic records from
the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in
benthic-derived ML 𝛿18Oc. Understanding the spatiotemporal covariance of deglacial ML 𝛿18Oc will also
improve abilities of 𝛿18Oc records to constrain deglacial circulation.

1. Introduction

Changes in the physical and chemical properties of the ocean were an important component of the global cli-
mate change of the last deglaciation, the period roughly 20–10 cal kyr B.P. (ka), when Earth’s atmosphere and
ocean warmed and ice sheets retreated. Numerous studies have investigated possible large deviations from
the modern circulation during this time using numerical models [Manabe and Stouffer, 1988; Otto-Bliesner
et al., 2007; Liu et al., 2009; Barker et al., 2009], proxy observations [Keigwin, 2004; McManus et al., 2004; Curry
and Oppo, 2005], and combinations of models and data [LeGrand and Wunsch, 1995; Winguth et al., 2000;
Gebbie and Huybers, 2006; Burke et al., 2011; Marchal and Curry, 2008; Dail and Wunsch, 2014; Gebbie, 2014].
Distinguishing between possible circulation changes is challenging because the available database is sparse
and has numerous sources of uncertainty.

The oxygen isotope ratio, 𝛿18O, of foraminiferal shells extracted from sediment cores has been used for
decades as an indicator of global ice volume and deglacial climate change [e.g., Hays et al., 1976]. Foraminiferal
measurements of 𝛿18O are a proxy for the equilibrium calcite oxygen isotope ratio, 𝛿18Oc, which is a function
of the temperature and the oxygen isotope ratio, 𝛿18Ow , of ambient seawater [e.g., Bemis et al., 1998]. Increas-
ing temperatures and melting land ice sheets both decrease 𝛿18Oc in the surface ocean, so that changes in
𝛿18Oc are indicative of major deglacial climate change processes.

Regional variations in observations of benthic 𝛿18Oc have been interpreted in terms of various physical
processes and changes, including (1) changes in ocean circulation, (2) changes in mixed layer (ML) 𝛿18Oc

values, (3) delays due to ocean tracer propagation times, and (4) observational, representational, and age
model errors. Skinner and Shackleton [2005] suggested that an apparent 4000-year offset in the onset
of deglaciation between 𝛿18Oc in sediment cores TR163-31B (3210 m, eastern equatorial Pacific) and
MD99-2334K (3146 m, Iberian Margin) could be explained by circulation changes in the deep Atlantic Ocean.
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Waelbroeck et al. [2006] interpreted reductions at 16 ka in 𝛿18Oc and the carbon isotope ratio 𝛿13C at site
MD98-2165 (2100 m, Indian Ocean) as the signature of a poorly ventilated, brine-generated intermediate
water mass that propagated to the Indian Ocean from the North Atlantic via a “fast connection” (simultane-
ous to within dating uncertainty). Waelbroeck et al. [2011] found signals of the last deglaciation in the Atlantic
appearing earliest in waters at roughly 1000 m water depth and concluded that a delayed onset of deglacia-
tion in waters deeper than 3000 m is consistent with reduced advection of 𝛿18Oc signals in deep waters during
Heinrich Stadial 1 (17.5–16.5 ka). In contrast, Wunsch and Heimbach [2008] estimated time scales of tracer
equilibration and concluded that the 4000-year offset in cores MD99-2334K and TR163-31B is consistent with
the modern ocean circulation, and Gebbie [2012] found deglacial histories of global ML seawater 𝛿18O and
temperature that reproduced the offset.

This paper evaluates the ability of last deglacial 𝛿18Oc records to constrain hydrographic changes hypothe-
sized in the literature. Planktonic and benthic records lie “upstream” and “downstream” in the global ocean
tracer transport in the sense that tracer values are first set in the mixed layer, near the habitats of planktonic
foraminifera, and are subsequently transported to abyssal habitats of benthic foraminifera. Modifications in
ML 𝛿18Oc signals as they are communicated to the deep ocean are set by properties of the ocean circulation;
in principle, some of these properties can be estimated by comparing upstream and downstream observa-
tions of 𝛿18Oc . An analog is a one-dimensional advective-diffusive system (“pipe flow”) with transiting tracer
pulses, wherein the degree of smoothing of an upstream tracer signal en route to a downstream observer is
related to flow diffusivity and delays in arrival times are indicative of flow speed. Relationships between arrival
times, smoothing, and transport properties are much more complex in the turbulent, three-dimensional
global ocean. Here, rather than attempting directly to infer flow speeds or diffusivities, we develop an
upstream-downstream framework to address the more basic question of whether a compilation of deglacial
benthic and planktonic records can detect differences between the modern circulation and that of the last
deglaciation. Equivalently, the goal is to test the null hypothesis that the circulation over the last deglaciation
is indistinguishable from the modern circulation given the available data.

The procedure is to compare deglacial ML 𝛿18Oc histories from (1) a least-squares fit of eight benthic 𝛿18Oc

benthic records to an estimate of the modern circulation and (2) 13 planktonic 𝛿18Oc records. Disagreements
(beyond uncertainty) between benthic- and planktonic-derived ML 𝛿18Oc estimates would disprove the null
hypothesis and provide information about deglacial circulation changes.

In the present application, ML 𝛿18Oc estimates derived from planktonic and benthic foraminifera agree given
their uncertainties. This result does not mean that the circulation did not change over the deglaciation, merely
that the data and assumptions lack the power to detect those changes. As additional data are gradually being
generated and new age models constructed, this study should be regarded as providing a tentative set of con-
clusions about the power of foraminiferal 𝛿18Oc to constrain past circulations and establishing a very general
method for using additional data as they become available. The main contributions of this work are a means to
quantify uncertainty in the problem of inferring past circulation from ocean tracer records, an understanding
of physical processes contributing to that uncertainty, and the identification of steps to reduce uncertainty in
future studies.

2. Benthic and Planktonic 𝜹18Oc Records

Eight sediment core records of benthic 𝛿18Oc (Table 1) were selected based on their resolution in time
(to minimize errors due to aliasing) and the availability of age models that were not derived by synchronizing
𝛿18Oc records to benthic 𝛿18Oc at other core sites, which can destroy information about the timing of tracer
signals. These data are a representative, but not complete, subset of previously studied records satisfying
these criteria. Most have been used in previous studies on the propagation of 𝛿18Oc signals in the ocean
[Skinner and Shackleton, 2005; Waelbroeck et al., 2006, 2011]. The data coverage is far from ideally suited to the
problem; discussion of an ideal set of core locations is postponed until section 5. All 𝛿18Oc values are reported
and plotted in units of permil Vienna Peedee belemnite (VPDB).

For easier reference, benthic records are labeled in this study by ocean basin and recovery depth rather than
cruise number (e.g., SA3770 is the core recovered from the South Atlantic at 3770 m water depth; see Table 1).
Five of the records were obtained from the Atlantic Ocean, two from the Indian Ocean, and one from the
Pacific Ocean (Figure 1). Water depths of the sediment cores range from 1299 m to 3770 m. All of the records
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Table 1. Summary of Benthic Foraminiferal 𝛿18Oc Recordsa

Core Code Ocean Depth Species References

GeoB1711 SA1967 Atl S 1967 m Cibicidoides wuellerstorfi Little et al. [1997]

Vidal et al. [1999]

Waelbroeck et al. [2006]

GeoB9526-4 NA3223 Atl N 3223 m C. wuellerstorfi Zarriess and Mackensen [2010]

Zarriess and Mackensen [2011]

M35003-4 NA1299 Atl N 1299 m C. wuellerstorfi Hüls and Zahn [2000]

Cibicidoides kullenbergi Zahn and Stüber [2002]

Cibicidoides pseudoungerianus Rühlemann et al. [1999]

MD07-3076Q SA3770 Atl S 3770 m C. kullenbergi Waelbroeck et al. [2011]

Skinner et al. [2010]

MD98-2165 EI2100 Ind E 2100 m C. wuellerstorfi Waelbroeck et al. [2006]

Cibicidoides spp.

MD99-2334K NA3146 Atl N 3146 m Planulina wuellerstorfi Skinner and Shackleton [2004]

Globobulimina affinis Skinner et al. [2003]

NIOP-905 NI1580 Ind N 1580 m C. kullenbergi Jung et al. [2001]

Cibicidoides spp. Jung et al. [2009]

Ivanochko et al. [2005]

TR163-31b EP3210 Pac E 3210 m Uvigerina senticosa Shackleton et al. [1988]

C. wuellerstorfi Skinner and Shackleton [2005]
a“Code” indicates reference codes used in this paper for ease of discussion. SA1967 refers to a South Atlantic core at

1967 m depth, NI1580 to a North Indian core at 1580 m depth, etc. All species are from the genus Cibicidoides except for
cores NA3146 (Planulina and Globobulimina) and EP3210 (Uvigerina).

but SA3770 come from continental margins, and all but two are based on tests from the genus Cibicidoides;
𝛿18Oc records for cores NA3146 and EP3210 are derived at least in part from other genera.

Chronologies of benthic 𝛿18Oc records were derived primarily from radiocarbon ages of planktonic
foraminifera extracted from the same sediment core. For all records but two (SA1967 and NA1299) the pub-
lished age models are used in this study. In SA1967 and NA1299 the published age models were constrained
in part by tuning those records to benthic 𝛿18Oc from other sediment cores; new age models for those cores
were constructed by computing calendar ages from published 14C ages using OxCal 4.1 [Bronk Ramsey, 2009;
Reimer et al., 2009] and linearly interpolating between 14C-derived ages with depth. Previously published
age models for NA3146 and NA3223 used in this study rely in part on synchronization of planktonic 𝛿18Oc

Figure 1. Locations of the eight benthic (blue, with labels) and 13 planktonic (red squares) records of 𝛿18Oc used in this
study. Locations and names of planktonic records are listed in Table 2.
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Figure 2. Eight benthic foraminiferal 𝛿18Oc anomaly records are
used to infer ML conditions. Blue dots show the published data,
the solid black line their objectively mapped values, and the
gray shading the objectively mapped one-sigma uncertainty.
Red lines show the reconstructed data, ỹ∗, (see text) derived
from the ML 𝛿18Oc solution obtained in section 4 with the small
effect due to initial conditions added back. Vertical grid spacing
is 1‰, and record order is arbitrary.

records derived from those cores to planktonic
𝛿18Oc records for cores SU81-18 [Bard et al.,
1987] and MD95-2042 [Shackleton et al., 2004],
respectively.

Each benthic 𝛿18O record shows a deglacial
decrease of 1–2‰ over the interval from 25
to 5 ka, but the timing of these transitions
appears asynchronous with the age models
used (Figure 2). The deglacial 𝛿18Oc decrease in
core EP3210 begins at roughly 15 ka, markedly
later than in other records. Records at shallower
depths (NI1580, EI2100, SA1967, and NA1299)
appear to share a two-stage decrease in 𝛿18O,
with the first transition occurring between
roughly 18 ka and 16 ka.

Only temporal anomalies relative to each sed-
iment core record’s time mean are considered
in this paper. Subtraction of record time means
mitigates effects of interlaboratory and inter-
species 𝛿18Oc offsets [e.g., Ostermann and Curry,
2000] as well as a small nonconservative effect
due to pressure. Isolation of record anomalies
is permitted by the linearity of passive tracer
transport; in solving the inverse problem using
the anomalies, it is assumed that record means,
anomalies, and their respective uncertainties
are uncorrelated. The separate inverse problem
of finding a history of ML 𝛿18Oc satisfying the
record time means is ignored because record
means are biased from true means by finite
record lengths.

Benthic 𝛿18Oc anomaly records may be decom-
posed into “signal” and “noise” components,
where the signal is the true in situ 𝛿18Oc and
the noise consists of supposedly random varia-
tions due to observational and representational
errors. Signal and noise are both assumed to be
Gaussian processes. Explicit noise statistics are
required to use the data quantitatively; here, fol-
lowing LeGrand and Wunsch [1995], Gebbie and
Huybers [2006], and Marchal and Curry [2008],
observational errors are described by zero mean
white noise with standard deviation 𝜎n = 0.2‰.

Due to variable sampling procedures and sedimentation rates, measurements within each benthic 𝛿18Oc

record are spaced irregularly in time. To avoid preferential fits in the least-squares procedure to benthic records
during densely sampled time periods, objective mapping [e.g., Bretherton et al., 1976; Wunsch, 2006] is used
to generate time series that are regularly spaced at 200 year intervals spanning 25 ka to 5 ka (Figure 2). To
compute objectively mapped values, a statistically stationary estimate of the signal autocovariance, R(𝜏) =⟨s(t)s(t − 𝜏)⟩, is necessary for each record, where 𝜏 is a time lag, s is the 𝛿18Oc record signal component, and
angle brackets indicate the expected value. Signal autocovariances are calculated by fitting a power law to
the structure function, V(𝜏) ≡ 1

2

⟨
[s (t + 𝜏) − s(t)]2⟩ =

⟨
s2(t)

⟩
− R(𝜏), computed between every two points in

each record [Press et al., 1992; Rybicki and Press, 1992; Amrhein, 2014]; the signal variance,
⟨

s2(t)
⟩

, is approxi-
mated from the record variances and 𝜎n. The resulting interpolation (Figure 2) has uncertainties determined
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Table 2. Summary of Planktonic Foraminiferal 𝛿18Oc Recordsa

Core Latitude Longitude Species References

MD03-2707 2.5∘N 9.4∘E G. Ruber Weldeab et al. [2007]

PS1906-2 76.8∘N 2.2∘W N. pachy s. Nees and Thiede [1993]

PS1243-1 69.4∘N 6.6∘W N. pachy s. Bauch et al. [2001]

MD95-2010 66.7∘N 4.6∘E N. pachy s. Dokken and Jansen [1999]

GIK23519-5 64.8∘N 29.6∘W N. pachy s. Millo et al. [2006]

P69 40.4∘S 178∘E G. bulloides Nelson et al. [2000]

ODP177-1089 40.9∘S 9.9∘E G. bulloides Hodell et al. [2003]

MD73-025 43.5∘S 51.2∘E N. pachy s. Labracherie et al. [1989]

MD84-527 43.5∘S 51.2∘E N. pachy s. Pichon et al. [1992]

RC13-271 52.0∘S 4.5∘E N. pachy s./d. Charles et al. [1991]

MD84-551 55∘S 73.2∘E N. pachy s. Pichon et al. [1992]

MD95-2040 40.6∘N 10.1∘W G. bulloides Schönfeld et al. [2003]

ODP980 55.5∘N 14.7∘W N. pachy s. D. Oppo and J. McManus (personal communication, 2014)
a“N.” and “G.” stand for Neogloboquadrina and Globigerina; “pachy” stands for pachyderma; and “s.” and “d.” stand for

sinistral and dextral.

by 𝜎n, the estimate of R(𝜏), and the data distribution. Because objectively mapped values are linear combi-
nations of observations, uncertainty is autocorrelated in time within each record. Uncertainty is assumed to
be uncorrelated between records because observational and representational error processes at distant core
sites are likely to be independent.

Thirteen planktonic 𝛿18Oc records (Figure 6 and Table 2) were selected on the basis of resolution, presence
of 14C-derived age models, duration, and location in the North Atlantic or Southern Oceans (section 4). Eight
records were derived from Neogloboquadrina pachyderma (sinistral), three from Globigerina bulloides, one
from G. ruber, and one from N. pachyderma (both sinistral and dextral). Original published age models are
used. All age models are derived from 14C dates on planktonic foraminifera and (or) by correlation to ice core
records, with the caveat that several models may not include updated 14C reservoir ages [e.g., Skinner et al.,
2010]. Each record has a glacial-interglacial transition of 1–2‰. Spatial variations among planktonic 𝛿18Oc

records are due to local and regional variability as well as record noise.

3. Model-data Analysis
3.1. Relating Benthic Proxies to ML Conditions
A tracer transport model is used to relate sediment core benthic 𝛿18Oc records to mixed layer 𝛿18Oc histories.
Similar to Lund et al. [2011], the procedure treats 𝛿18Oc as conservative everywhere, except for source contri-
butions in the ML. Experimental studies [e. g., Bemis et al., 1998] show that 𝛿18Oc measured on foraminifera
is well represented by a linear function of seawater 𝛿18O, 𝛿18Ow , and temperature, T . Nonconservative pres-
sure effects on T yield biases of 0.02–0.07‰ for each core depending on depth and latitude [Fofonoff and
Millard, 1983; Bryden, 1973; Saunders, 1981]. This effect is mitigated by the subtraction of record means and is
otherwise neglected.

To illustrate the data analysis method generically, define first a state vector, c(t) =
[

c1(t), c2(t),… cN(t)
]⊤

,
where ci(t) is 𝛿18Oc at a time t in the ith of N grid boxes subdividing the ocean domain below the ML. Likewise
define the vector q(t) =

[
q1(t), q2(t),… qL(t)

]⊤
to be the 𝛿18Oc in L ML regions. Evolution of the state vector

is written in the canonical form

c (t + Δt) = Ac(t) + Fq(t). (1)

Lower case and upper case bold variables are vectors and matrices, respectively. The matrix A is the so-called
state transition matrix, and F describes the influence of q(t) on the state at the time t + Δt [Wunsch, 2006].
Here we assume (from the null hypothesis) that A and F are steady and known from the modern circulation.
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Define y(t) =
[

y1(t), y2(t),… yM(t)
]⊤

to be the objectively mapped benthic 𝛿18Oc anomalies (section 2) from

M sediment cores, and let n(t) =
[

n1(t), n2(t),… nM(t)
]⊤

be the errors in those anomalies. Benthic 𝛿18Oc

anomalies are expressed as noisy measurements of the model state, c(t),

y(t) = Bc(t) + n(t), (2)

where the matrix B relates benthic 𝛿18Oc anomalies at sediment core locations to 𝛿18Oc at the nearest grid
boxes. Offsets of 200–300 m exist in several cases between model grid box centers and core depths, effects
of which are not considered.

To write a single matrix equation relating the time history of ML 𝛿18Oc to benthic observations at all times,
define concatenated vectors of values ordered first in space and then in time as underlined vectors,

y =
[

y(t0)⊤, y
(

t0 + 1Δt
)⊤

,… , y
(

t0 + SΔt
)⊤]⊤

(3)

n =
[

n(t0)⊤,n
(

t0 + 1Δt
)⊤

,… ,n
(

t0 + SΔt
)⊤]⊤

(4)

q =
[

q(t0)⊤,q
(

t0 + 1Δt
)⊤

,… ,q
(

t0 + SΔt
)⊤]⊤

, (5)

where S+1 is the number of times when observations are present and t0 is the initial such time. The initial
conditions, data, noise, and ML conditions are related by

y = y
0
+ Gq + n, (6)

where the matrix G is described in Appendix A and y
0

is the contribution due to initial conditions, which

decays to 0 after 5000 years in the present problem. As it is not the focus of this study, y
0

is estimated sep-
arately as ỹ

0
(not shown) by forward propagating a least-squares fit of time-constant ML 𝛿18Oc to benthic

anomalies averaged over −25,000 to −20,000 years. Defining y∗ = y − ỹ
0

and ignoring uncertainties in the
estimation of ỹ

0
, the observations and ML conditions at all times are related by

y∗ = Gq + n. (7)

This equation is solved to estimate the history of ML 𝛿18Oc (q) from benthic 𝛿18Oc anomalies (y∗) in the
presence of a modern ocean circulation model (G) and record noise (n).

The matrix G is constructed from adjoint Green’s functions, which are computed by integrating a circulation
model backward in time for 5000 years under Heaviside conditions at each grid box representing a 𝛿18Oc

record (i.e., at each of those grid boxes, c(t) = 0 for t < 0 and c(t) = 1 for t ≥ 0, with c(t) = 0 at all other
grid boxes and times) and differencing the output in time. Contributions after 5000 years are set to 0, which is
accurate to within 10−5. The present approach is closely related to applications using transit time distributions,
which are a form of Green’s function [Peacock and Maltrud, 2006; Rutberg and Peacock, 2006].

The model used is a statistically steady state representation of the combined effects of advection and mixing
in the modern ocean circulation [Gebbie and Huybers, 2010, 2012, hereafter GH12]. Transports calculated in
an ocean general circulation model (GCM) could also be used for this purpose; the GH12 model was chosen
for its abilities to represent tracer distributions in the modern ocean and to approximate regions and rates of
deepwater formation, which are poorly simulated in most GCMs. The GH12 circulation was estimated using
observations of potential temperature, salinity, phosphate, nitrate, and oxygen from a hydrographic compi-
lation (World Ocean Circulation Experiment and previous measurements, Gouretski and Koltermann [2004]), a
gridded seawater 𝛿18O product [LeGrande and Schmidt, 2006], and the Global Data Analysis Project gridded
data set of prebomb radiocarbon [Rubin and Key, 2002; Key et al., 2004]. The model domain has 33 vertical lev-
els and a 4∘ × 4∘ resolution with L = 2806 ML regions whose vertical extent is defined using modern observed
winter ML depth [Conkright et al., 1994].

Figure 3 shows the adjoint Green’s functions for cores EP3210 and NA3146. The method of empirical orthog-
onal functions [e.g., Preisendorfer and Mobley, 1988] was used to plot each adjoint Green’s function as a single
spatial pattern varying in time; in both cases this approximation captures more than 90% of the total spa-
tiotemporal variance. The adjoint Green’s functions show that tracer propagation to core sites smooths ML
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Figure 3. Adjoint Green’s functions for NA3146 (red, Iberian Margin) and EP3210 (blue, eastern equatorial Pacific)
computed using the GH12 model (see text). The adjoint Green’s functions may be interpreted as follows. In the case
when ML 𝛿18Oc conditions are a delta function in the ith ML grid box at t = 0 (that is, qi(t) = 1‰ at t = 0 and q(t) = 0‰
at all other places and times), the signal at each deep core site as the model is integrated forward in time is equal to
(b) the time trajectory, scaled by the fraction indicated by (a) the circled area in the ith grid box. Where there are no
circles, the tracer communicated to core sites is very small or 0. An approximation is made in representing the adjoint
Green’s functions by a pair of spatial and temporal patterns (see text); over 90% of the variability is accounted for at both
core sites.

tracer anomalies in time and that outside of model high latitudes, tracer signals are minimally communi-
cated to core sites. The adjoint Green’s function is broader in time for the deep Pacific core site than for the
deep North Atlantic core site, qualitatively consistent with longer tracer equilibration time in basins far from
deepwater formation regions [Wunsch and Heimbach, 2008]. The NA3146 site is bathed primarily in deep
water formed in the North Atlantic and Arctic, whereas the EP3210 site is mostly influenced by Southern
Ocean waters.

The model time step used isΔt = 200 years, the initial time is t0 = −25,000 years, and the number of time steps
is 101, corresponding to reconstruction dates t = −25,000, −24,800,… − 5000 years. The data and noise, y∗

and n, are each 806 × 1 vectors whose length equals the total number of objectively mapped observations,
and q is a 283,406 × 1 vector whose length corresponds to the number of ML regions (2806) at every time
(101) in the reconstruction. In total, 283,406 unknown ML 𝛿18Oc values and 806 unknown observational errors
are constrained by 806 objectively mapped benthic 𝛿18Oc anomalies.

3.2. Solution Method for Benthic-Derived ML 𝜹
18Oc

The singular value decomposition (SVD) [e. g., Wunsch, 2006] is used to find solutions for q in equation (7). The
SVD of G is G = U𝚲V⊤, where U and V are square orthonormal matrices and 𝚲 is a nonsquare diagonal matrix
with K strictly positive singular values 𝜆1, 𝜆2,… 𝜆K in decreasing order along the diagonal. The ith columns
of U and V (the singular vectors) are written as ui and vi , respectively. Denoting estimated values with a tilde,
the general solution for q computed by SVD is

q̃ =
K′∑

i=1

u⊤

i y∗

𝜆i
vi +

283406∑
i=K′+1

𝛼ivi. (8)

AMRHEIN ET AL. LAST DEGLACIAL OXYGEN ISOTOPES 7



Paleoceanography 10.1002/2014PA002743

In the solution, the first K ′ of the vi (the effective range vectors) are weighted by the projection of the data, y∗,
onto the corresponding ui and inversely weighted by𝜆i. The remaining vi (the effective null-space vectors) are
weighted by unknown coefficients 𝛼i , all of which are set to 0, yielding the so-called truncated SVD solution.
The effective rank, K ′ ≤ K , specifies the number of singular vectors retained in the solution (the effective
range vectors) and is chosen based on the singular values, whose magnitudes are very low when data sparsity
and (or) noise precludes resolving the corresponding vectors.

Quantification of solution uncertainties is essential to compare benthic-derived ML 𝛿18Oc to planktonic
records. The truncated SVD solution uncertainty matrix, P, describes the expected squared deviation of
estimated ML 𝛿18Oc from the true values [Wunsch, 2006],

P =
⟨(

q̃ − q
)(

q̃ − q
)⊤

⟩
=

K′∑
i=1

K′∑
j=1

vi

u⊤

i

⟨
nn⊤

⟩
uj

𝜆i𝜆j
v⊤

j +
283406∑
i=K′+1

283406∑
j=K′+1

vi

⟨
𝛼i𝛼j

⟩
v⊤

j . (9)

Define the two components of P to be Pc and Pnull, respectively. The solution covariance, Pc, describes uncer-
tainty due to the observational error covariance,

⟨
nn⊤

⟩
, (estimated by objective mapping in section 2); the

square root of its diagonal elements is the solution standard error. The contribution to the solution standard
error from including the ith singular vector is proportional to 1∕𝜆2

i , indicating that Pc is highly sensitive to
small values of 𝜆i . The null-space uncertainty, Pnull, describes uncertainty from null-space vectors. A tradeoff
exists in choosing K ′: as K ′ → K , Pnull grows smaller as the number of effective null-space vectors decreases,
but Pc grows larger as small 𝜆i are included in q̃. Here K ′ is chosen based on the 𝜆i with the goal of minimizing
the total solution uncertainty.

The solution covariance, Pc, is readily computed from the SVD and
⟨

nn⊤
⟩

, but additional a priori information
about the null-space weights, 𝛼i , is required for an absolute estimate of Pnull. Instead, a relative measure of
Pnull is given by the solution resolution matrix, Tv ,

Tv = VK′V⊤

K′ , (10)

where VK′ =
[
v1,… vK′

]
is the semiorthogonal matrix of right singular vectors in the effective range of G. The

solution resolution matrix relates inferred and true ML 𝛿18Oc,

q̃ = Tvq, (11)

in the absence of observational uncertainty and illustrates which features of q lie in the null space and cannot
be reproduced in q̃ [Wunsch, 2006]. In the benthic tracer inverse problem, unresolvable features in time
are due to low-pass filtering by ocean tracer propagation [Rutberg and Peacock, 2006; Amrhein, 2014], and
unresolvable features in space are due to the sparsity of deepwater formation regions and mixing in the ocean
interior (section 4 and Appendix C).

The pointwise resolvability, r, is derived from Tv and describes the spatial distribution of Pnull, which is impor-
tant for comparing q̃ to planktonic records. To define r, consider the hypothetical scenario where the true ML
𝛿18Oc deglacial history, q

hyp,i
, is q0 in the ith ML grid box and 0‰ everywhere else at all times over the last

deglaciation. By equation (11), the reconstructed ML 𝛿18Oc is q̃hyp,i = Tvqhyp,i . Let q̃0 be the deglacial time
mean value of the ith grid box element in q̃hyp,i . The pointwise resolvability is defined as

ri =
q̃0

q0
, 0 ≤ ri ≤ 1 (12)

and indicates what fraction of a ML 𝛿18Oc signal in the ith grid box on the longest time scale will be recon-
structed at the same location by the particular SVD solution. Insofar as ocean tracer transport acts as a low-pass
filter, r serves as an upper limit on the resolvability of shorter-timescale variability.

An additional diagnostic afforded by the SVD solution is the data resolution matrix,

Tu = UK′U⊤

K′ (13)

where UK′ =
[
u1,…uK′

]
is the semiorthogonal matrix of left singular vectors in the effective range of G. The

diagonal elements of Tu are the “data importance” and describe the relative importance of each observation
in determining the solution [Wunsch, 2006].
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Before computing the SVD, the problem is weighted to reflect observational uncertainty (derived from objec-
tive mapping, section 2) and scaled by the column norms of G [Wunsch, 2006] to remove biases from spatial
variations in vertical transport out of the ML, at the expense of introducing covariance between solution
elements (Appendix C). Of the 283,406 singular values of G, K = 806 are nonzero, corresponding to the
number of objectively mapped observations at all times. Section 4 discusses results using K ′ = 230, chosen
so that singular values less than the typical standard deviation of the objectively mapped observational noise
lie in the null space. Larger values of K ′ improve the fit to the data (up to an exact fit for K ′ = 806), at the
expense of rapidly increasing solution amplitudes and standard errors. Smaller values of K ′ yield inferior fits
to the observations.

3.3. Relating Planktonic Proxies to ML Conditions
Planktonic 𝛿18Oc observations (section 2, written for all locations and times as the underlined vector yp) and
q can be related in a generic linear form as

yp = Rq + np, (14)

where R is a matrix describing which ML regions and times are constrained by planktonic observations (anal-
ogous to G for benthic records) and np is the planktonic observational noise. Planktonic-derived ML 𝛿18Oc

estimates are written as q̃p. Ideally, the matrix R should represent plankton vital effects as well as covariances
between 𝛿18Oc in the ML and planktonic habitats, but these processes are poorly understood. Here the sim-
plifying assumption is made that planktonic records measure 𝛿18Oc in the ML overlying their sediment core
site; uncertainties in this representation are not assessed.

4. Results
4.1. ML 𝜹

18Oc Inferred From Benthic Data
The truncated SVD solution, q̃, to equation (7) is a deglacial time history of ML 𝛿18Oc for all ML locations at
t = −25,000, −24,800,… −5000 years derived from eight benthic 𝛿18Oc records. Null-space uncertainties
place strong limits on reconstruction fidelity, as diagnosed by the pointwise resolvability (Figure 4), which is
nonuniformly distributed and generally small (r < 0.01) outside of high latitudes. Low r values imply that
(1) only a small fraction of the true variability in each ML region is reconstructed and that (2) many other
candidate solutions will fit the benthic data equally well. Evidently, in the context of the modern circulation,
the benthic records effectively carry no information about the evolution of deglacial ML 𝛿18Oc outside of
high latitudes. Understanding how high-latitude ML 𝛿18Oc covaried with values in other regions might permit
benthic records to constrain those regions as well (section 5).

The spatial distribution of pointwise resolvability is similar to that of the adjoint Green’s functions (Figure 3),
which in turn reflect dominant “ocean-filling” sites in the GH12 model [Gebbie and Huybers, 2011]. Clearly,
only 𝛿18Oc in ML regions that play a large role in ventilating the deep ocean can be reconstructed with any
fidelity; the rationale is that only those regions have contributions to 𝛿18Oc at core sites that are not dwarfed
by observational noise. Appendix C demonstrates this tendency in a four-box model. As different modeled
circulations have different surface regions that are most important for filling the deep ocean, the pointwise
resolvability is sensitive to the steady circulation that is assumed.

Figure 4 plots q̃ as time series in five regions with nonzero r. All regions show glacial-interglacial transitions of
1–2‰ superimposed upon several qualitatively different patterns of millennial and multimillennial
variability. Regions not plotted also have 1–2‰ deglacial transitions, with similar patterns of variability,
except for regions lying in the solution null space, where the reconstructed value is 0‰. Examination of Pc

(not shown) reveals that coherences within and between regions are highly uncertain and are likely due
to data sparsity, as there is insufficient information to “unmix” contributions of different ML grid boxes to
benthic core sites and to resolve spatial gradients in ML 𝛿18Oc, so that spatially broad patterns are inferred
(demonstrated in a four-box model in Appendix C). The standard error (not shown) in ML 𝛿18Oc is between
0‰ and 0.6‰ at each time and location; in general, grid boxes with small pointwise resolvabilities have
small standard errors because uncertainties in the data project minimally onto regions that are poorly con-
strained by the data. Together, the solution and pointwise resolvability suggest that the benthic data are
able (weakly) to resolve weighted spatial averages of ML 𝛿18Oc in regions of deepwater formation, as well as
grid-scale variability at locations whose contributions to ventilating the deep ocean in the model of GH12 are
exceptionally high.
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Figure 4. (a) Circle area indicates the pointwise resolvability r for the underlying grid box; filled circles over land in the
lower left provide a legend. Locations without circles have resolvability < 0.01. Lighter gray areas define regions plotted
in (b). Box 1 and the region south of the dotted line at 50∘S are averaged to compute the North Atlantic and Southern
Ocean time series m̃NA and m̃SO, respectively (see text). (b) The solution q̃ plotted as overlaid time series at every grid
box within the five geographical regions and shaded by pointwise resolvability. In all regions, values after 6 ka lie in the
null space and are equal to 0, as they are not constrained by objectively mapped benthic observations, which end at
5 ka. Note the nonlinear color bar.
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Figure 5. Estimates of ML 𝛿18Oc anomalies in the North Atlantic (m̃NA) and Southern Oceans (m̃SO) derived from benthic
records. The inner error bar is the standard error, the middle envelope includes the null-space contribution when ML
𝛿18Oc is assumed hemispherically covarying, and the outer envelope includes the null-space contribution when ML
𝛿18Oc is assumed spatially uncorrelated (see text).

The reconstructed data, ỹ∗ = Gq̃, is the 𝛿18Oc reconstructed at benthic core locations when ML conditions
are q̃ in an integration of the GH12 model over the deglaciation. Many characteristics of the data are
reconstructed in ỹ∗ (Figure 2): a deglacial transition of plausible amplitude is evident at every core site, no
biases are apparent, and many record features are recovered. The reconstruction of a last deglacial ML 𝛿18Oc

history assuming the modern circulation that largely agrees with eight benthic records is not a trivial result.
If such a history could not be found, then one might conclude that the misfit was due to a deviation from
the modern circulation. The misfit to NA1299 during 18–16 ka can be reduced by choosing K ′ = 500, at the
expense of introducing high-amplitude, millennial-scale variability and large standard errors to the solution
in the Southern Hemisphere; even larger values of K ′ are necessary to reduce the misfit to SA1967 during
15–13 ka.

Spatially averaged time series of q̃ computed for the North Atlantic (m̃NA(t)) and the Southern Ocean (m̃SO(t))
are shown in Figure 5 (corresponding regions are shown in Figure 4; Appendix B describes the mean estima-
tion procedure). Null-space uncertainties are computed using two examples of possible covariance matrices⟨

qq⊤

⟩
; both assume that q is Gaussian with zero mean and standard deviation equal to 1‰, with no auto-

correlation in time. In the first example, no spatial covariance is imposed between ML grid boxes, and in the
second example, ML 𝛿18Oc is made to be spatially uniform within the Northern and Southern Hemispheres.
Both cases likely underestimate the true null-space uncertainty.

Both m̃NA(t) and m̃SO(t)have maximum values of 𝛿18Oc between 21 and 19 ka and minimum values at 8 ka, and
solution variances are dominated by a roughly 2‰ glacial-interglacial transition. On the interval from 17 ka to
11 ka, m̃NA(t) is persistently less than m̃SO(t), with the largest differences (0.8‰ and 0.7‰) centered on 15.6 ka
and 12.6 ka. Uncertainty contributions due to Pc and Pnull are comparable in size, and null-space uncertainties
are smaller when q is assumed spatially uniform within hemispheres. It is tempting to speculate about causes
for interhemispheric variability in the inferred ML 𝛿18Oc, but given the large uncertainties, differences between
m̃NA(t) and m̃SO(t) are not significantly different from 0‰.

Because ML 𝛿18Oc histories are poorly constrained by benthic records, additional prior constraints on the
solution could change its character substantially and reduce biases from the true solution. For instance,
consideration of temperature and 𝛿18Ow suggests that inferred 𝛿18Oc values (Figure 4) in the Southern
Ocean (SO) are biased high at the Last Glacial Maximum (LGM, approximately 23–19 ka). Given the inferred
LGM-Holocene anomaly ofΔ𝛿18Oc =2.25‰ (Figure 5), using a paleotemperature equation [Bemis et al., 1998],
𝛿18Oc =3.4 + 𝛿18Ow − 0.21T , and attributing 1‰ to global ice volume differences from pore water measure-
ments [Adkins et al., 2002], LGM average SO ML temperatures are inferred to be 6∘C lower than in the Holocene,
lower than the freezing point in much of the modern SO ML. (The effect of roughly 1g/kg higher global average
salinities at the LGM on the freezing point of water is a depression of roughly 0.06∘C [McDougall and Barker,
2011], too small to compensate for the inferred deviation.) For several reasons (Δ𝛿18Oc has a large uncertainty;
local patterns of warming and cooling within the SO are possible; and porewater-derived glacial 𝛿18Ow may
not be representative of the SO ML), we do not reject the solution, but the suggestion is that the solution
may be “too cold” at the LGM and, more generally, that the derived solution may have persistent regional
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Figure 6. Comparison of 13 planktonic 𝛿18Oc anomaly records (black curves) and 𝛿18Oc anomaly records derived from
benthic records (blue curves) in the ML regions overlying planktonic core sites in the (a) North Atlantic and (b) Southern
Oceans. Panels are ordered by latitude. Pointwise resolvabilities, r (section 3), and Pearson correlations, R, are shown to
the right of each panel. Very small values of r (order 10−5) are practically indistinguishable from 0. The vertical grid
spacing is 1‰. ML 𝛿18Oc in the region overlying MD03_2707 lies entirely in the null space of the inverse problem (r = 0)
and as such is inferred to be 0‰ at all times.

biases from true values. Treating temperature and 𝛿18Ow as separate tracers and assigning an a priori 0 prob-
ability to water temperatures below the freezing point could reduce the apparent bias; this direction is not
explored further.

4.2. Comparison of ML 𝜹
18Oc Estimates From Benthic and Planktonic Data

The motivation for deriving q̃ was to compare it to ML conditions, q̃p, estimated from planktonic foraminiferal
𝛿18Oc records; misfits (beyond uncertainty) between the two estimates would indicate deviations from the
modern circulation. Most planktonic records considered were recovered from high latitudes, where point-
wise resolvabilities are highest. Correlations between planktonic 𝛿18Oc records and time series from q̃ in
grid boxes nearest those records range between 0 and 0.96 in the North Atlantic and between −0.32 and
0.63 in the Southern Ocean (Figure 6). Prolonged offsets between the two reconstructions are evident at
most locations, and most features on millennial and shorter time scales in planktonic records are not visible
in the benthic reconstruction. However, low pointwise resolvabilities indicate that these disagreements are
highly uncertain and do not suffice to disprove the null hypothesis of indistinguishable LGM and modern
ocean circulations.
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Figure 7. (a) North Atlantic and (b) Southern Ocean planktonic 𝛿18Oc anomalies overlaid with means removed. Thick
black lines are the regional time means computed after smoothing and subsampling each record (see text). Grey bars
give the standard deviations of the records about the mean at each time.

Regional averages m̃NA(t) and m̃SO(t) of q̃ are more robust and may have more power to test the null
hypothesis and identify differences between the deglacial and modern circulations. For comparison, North
Atlantic and Southern Ocean averages of planktonic records (m̃p

NA(t) and m̃p
SO(t), respectively) are computed

(Figure 7). Prior to computing averages, planktonic 𝛿18Oc records were linearly interpolated to annual resolu-
tion, smoothed with a 200 year running mean, and subsampled at 200 year intervals to avoid overweighting
averages by more densely sampled records. One sigma uncertainties are approximated by standard devia-
tions of planktonic records computed at every time step; given the sparsity of the data, these estimates should
be regarded as lower limits.

Figure 8 compares m̃p
NA(t), m̃p

SO(t), m̃NA(t), and m̃SO(t). Ideally, a statistical test would be used to evalu-
ate whether planktonic- and benthic-derived estimates agree within error. At present, with few planktonic
records, a poor understanding of how and where they represent ML 𝛿18Oc (described by R, see section 3.3)
and lacking a robust quantification of their uncertainty, we conclude that regional averages do not differ sig-
nificantly. Thus, the null hypothesis that the deglacial circulation did not differ from the modern circulation
cannot be rejected even when comparing upstream and downstream records on large spatial scales.

5. Discussion

It is worth considering whether the null hypothesis that the past circulation was indistinguishable from the
modern is in any danger of being rejected in a statistically rigorous way by the available data. Several stud-
ies [LeGrand and Wunsch, 1995; Gebbie and Huybers, 2006; Marchal and Curry, 2008; Burke et al., 2011; Dail and
Wunsch, 2014] have found that modern ocean circulation estimates adequately represent many observations
from the LGM, though Gebbie [2014] suggested that 𝛿13C measurements might individuate the LGM circula-
tion given additional constraints on surface distributions of that tracer. The LGM is arguably better constrained
than the deglaciation because data are assumed to represent a steady state.

Rejecting the hypothesis of indistinguishable deglacial and modern circulations using only tracer signals
is very difficult because of the space-time filtering along modern tracer transport pathways. Other candi-
date circulations (such as an ocean with a 𝛿18Oc residence time of 106 years) could likely be readily rejected
by the paleo data but would be less relevant to the central question of how past ocean states might have
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Figure 8. Comparison of spatially averaged ML 𝛿18Oc anomalies inferred from benthic records in the North Atlantic
(m̃NA) and Southern (m̃SO) Oceans to corresponding averages of planktonic 𝛿18Oc anomalies m̃p

NA and m̃p
SO

.
Uncertainties are the same as those described for Figures 5 and 7.

differed from the present. The challenge lies in generating a network of paleoceanographic observations with
the power to test the null hypothesis and in representing those observations, along with salient a priori infor-
mation, in an inverse model. The present framework for using upstream planktonic and downstream benthic
records suggests ways forward on both fronts.

To test circulation hypotheses in the upstream-downstream framework, networks of benthic and planktonic
records ideally should each be able to constrain all degrees of freedom (that is, all possible spatiotemporal
structures) in ML 𝛿18Oc. Short of that ideal, benthic and planktonic networks must be able to constrain a com-
mon subset of the spatiotemporal structures. In theory, two records (one benthic and one planktonic) could
suffice to distinguish the deglacial circulation from the modern, provided their ML 𝛿18Oc estimates had
sufficiently low uncertainty; in practice, using multiple records of each type is more robust. Consideration of
the null space of the benthic inverse problem suggests that low-frequency variability at high latitudes is the
best target for reconstruction. Thus, additional high-resolution planktonic data representing high-latitude
regions would be valuable, with the goal of estimating the ML 𝛿18Oc histories of waters that ultimately bathe
benthic core sites. Similarly, benthic observations constraining ML 𝛿18Oc in regions where planktonic records
are available would be useful. Benthic records recovered near deepwater formation regions are expected to
have better preservation of high-frequency ML signals.

The data importance (defined in section 3.2) indicates the relative roles of benthic sediment core records for
constraining the present ML 𝛿18Oc solution. A value near 1 (the maximum) indicates that the solution is con-
strained to fit the corresponding record well, whereas values near 0 (the minimum) indicate that the data
minimally influence the solution and may be poorly reconstructed as a consequence. Data importance values
for the eight benthic sediment core records averaged in time from 20 to 10 ka (the shortened time interval
avoids edge effects) range from 0.12 (EI2100) to 0.94 (SA3770) (Table 3). Cores in the North and South Atlantic
near deepwater formation sites (where high-frequency ML signals have been attenuated less by ocean trans-
port) have generally higher importance than records from the Indian or Pacific Oceans. The proximity of
SA3770 to the Southern Ocean, which is important for setting the 𝛿18Oc in the global ocean and is poorly
constrained by other records, presumably contributes to its particularly high importance.
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Table 3. Data Importance for Benthic Records Averaged Over 20–10 ka Calculated From the Data Resolution Matrix Tu

SA1967 NA3223 NA1299 SA3770 EI2100 NA3146 NI1580 EP3210

0.16 0.30 0.29 0.94 0.12 0.25 0.17 0.13

Data importance can be computed for any hypothetical core location (given assumptions about the obser-
vational noise) and could be useful for choosing future core recovery sites. The broader question of sediment
core location as it applies to experimental design in paleoceanography is a complex subject that should
be addressed in a future study. Restrictions due to calcium carbonate preservation, sedimentation rates,
bioturbation, and age model construction dramatically limit the set of available core sites.

Prior knowledge of how ocean ML 𝛿18Oc varies in space and time (i.e., of
⟨

qq⊤

⟩
) would reduce the number

of unconstrained degrees of freedom in the evolution of ML 𝛿18Oc, thereby making the problem of con-
straining its evolution more feasible. Such knowledge could be used, for example, by imposing smoothness
constraints on the solution, as was done by Gebbie [2012] using modern distributions of temperature and
𝛿18Ow . In that study, solution values at high latitudes likely reflected constraints from observations, whereas

values elsewhere reflected a priori constraints. Estimating
⟨

qq⊤

⟩
over the last deglaciation is challenging, as

it is influenced by complex processes including surface ocean transport, patterns of evaporation and precip-
itation [Eisenman et al., 2009], and the spreading of low-𝛿18Oc waters from melting ice sheets [Condron and
Winsor, 2011, 2012].

We have ignored uncertainties in record chronologies and assumed a best-case scenario in which pub-
lished chronologies are correct. Inferences of past circulations from passive tracers are likely sensitive to
chronological errors, which artificially phase shift signals. Because the null-space uncertainties are so large,
it is unlikely that the fundamental results of this study would be changed by different core chronolo-
gies. Explicit descriptions of chronological uncertainties are critical for including that information in inverse
modeling studies.

6. Conclusions

The inference of ML 𝛿18Oc conditions is an important goal in paleoceanography, as surface 𝛿18Oc changes are
related to the Earth’s climate. This work was performed with a further goal in mind—the eventual inference of
past ocean circulation changes from passive tracers estimated upstream at the ocean surface and downstream
in the abyss. Here the modern ocean circulation was found to adequately represent planktonic and benthic
𝛿18Oc records during the last deglaciation given the large uncertainties estimated for both types of record.
This result does not disprove scenarios suggested by Waelbroeck et al. [2006, 2011] or Skinner and Shackleton
[2005] but states that deviations from the modern circulation could not be diagnosed on the basis of the 𝛿18Oc

records considered under the assumptions used in this paper.

An improved understanding of how planktonic observations record ML 𝛿18Oc (especially at deepwater for-
mation sites, which are best constrained by benthic records) and how ML 𝛿18Oc covaries in space and time
is necessary if benthic and planktonic records are to be used in tandem with tracer transport models to con-
strain the circulation. Additional highly resolved benthic 𝛿18Oc records with reliable age models, especially
those near deepwater formation sites or in the Southern Ocean, will further constrain the solution toward the
goal of differentiating the past circulation from the modern. The analyses presented are also well suited to
other geochemical tracers.

Appendix A: Statement of the Inverse Problem

Applying equation (1) recursively, the tracer state vector at time c(t0 + sΔt) for any time step number
s = 1, 2,… S is a linear function of the initial conditions and of the time history of q,

c(t0 + sΔt) = Asc(t0) +
s∑

k=1

Ak−1Fq(t0 + (s − k)Δt). (A1)

Substituting equation (A2) into equation (2) yields an expression relating the initial conditions, noise, and ML
conditions to the observation y(t0 + sΔt),

y(t0 + sΔt) = BAsc(t0) + B
s∑

k=1

Ak−1Fq
(

t0 + (s − k) Δt
)
+ n(t0 + sΔt). (A2)
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Using q (equation (5)), equation (A3) can be written as

y(t0 + sΔt) = BAsc(t0) + BG(s)q + n(t0 + sΔt), (A3)

where G(s) is the matrix (composed of model Green’s functions) whose operation on q gives the summation in
equation (A3). Together, the equations for y(t0 + sΔt) at all times, t0, t0 + Δt,… t0 + SΔt, constitute a
simultaneous set of linear equations in terms of c(t0), q, and n,

⎡⎢⎢⎢⎢⎣
y(t0)

y
(

t0 + Δt
)

⋮
y
(

t0 + SΔt
)
⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
BA0

BA1

⋮
BAS

⎤⎥⎥⎥⎥⎦
c(t0) +

⎡⎢⎢⎢⎢⎣
0

BG(1)
⋮

BG(S)

⎤⎥⎥⎥⎥⎦
q +

⎡⎢⎢⎢⎢⎣
n(t0)

n
(

t0 + Δt
)

⋮
n
(

t0 + SΔt
)
⎤⎥⎥⎥⎥⎦
. (A4)

Defining the matrices

A =

⎡⎢⎢⎢⎢⎣
BA0

BA1

⋮
BAS

⎤⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎣
0

BG(1)
⋮

BG(S)

⎤⎥⎥⎥⎥⎦
(A5)

and substituting y and n from equation (5), equation (A5) becomes, collectively for all space and time,

y = Ac(t0) + Gq + n. (A6)

Defining y
0
= Ac(t0) yields equation (6).

Appendix B: Computation of Regional Averages and Uncertainties

Regional averages m̃NA(t) and m̃SO(t) are computed via least squares [Wunsch, 2006] as area- and
uncertainty-weighted means of q̃ assuming that the deviations of q̃ about true regional means are described
by Pc; effects of this assumption are not assessed. Regional means are linear combinations of the elements
in q̃, so it is possible to write (for the North Atlantic region; the same procedure is also used in the Southern
Ocean) m̃NA = M′

NAq̃, where M′
NA is the matrix specifying the mean estimation procedure and m̃NA is m̃NA(t)

vectorized in time, m̃NA =
[

m̃NA (0) , m̃NA (Δt) ,… m̃NA (SΔt)
]⊤

. Similarly, define the matrix MNA relating the
true area-weighted regional average vector to the true ML conditions, mNA = MNAq. Using the definition
of Tv (equation (11)) and neglecting observational error, the null-space uncertainty due to approximating
mNA by m̃NA is ⟨(

mNA − m̃NA

) (
mNA − m̃NA

)⊤⟩ =
⟨(

MNAq − M′
NAq̃

)(
MNAq − M′

NAq̃
)⊤

⟩
(B1)

=
⟨(

MNAq − M′
NATvq

)(
MNAq − M′

NATvq
)⊤

⟩
(B2)

=
(

MNA − M′
NATv

) ⟨
qq⊤

⟩ (
MNA − M′

NATv

)⊤
, (B3)

where
⟨

qq⊤

⟩
is the true covariance of q. Two choices of

⟨
qq⊤

⟩
, chosen as examples, are described in the

main text and used to estimate the null-space uncertainty.

Appendix C: Inference of ML 𝜹
18Oc Conditions in a Four-Box Model

This appendix demonstrates a relationship between pointwise resolvability and ventilation rates in a four-box
model (Figure C1) using a single benthic 𝛿18Oc record, NA3146. The utility of column normalizing is
also discussed.

Model volumes and fluxes correspond in an order-of-magnitude sense to the geometry and vertical trans-
ports of the modern North Atlantic [Ganachaud and Wunsch, 2000]. Fluid with 𝛿18Oc equal to qM(t) and qH(t)
is transported at constant rates FM = 1 Sv (1 Sv = 106 m3 s−1) and FH = 9 Sv from middle- and high-latitude
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Figure C1. (a) Four-box tracer transport model schematic. The 𝛿18Oc values qM and qH in two ML boxes are injected into
box 1 at rates FM = 1 Sv and FH = 9 Sv. Fluid is homogenized in box 1 and flows into box 2 at a rate FM + FH = 10 Sv,
where it subsequently leaves the system. (b) Green’s function for qM (qH) is generated by stepping equation (C1) forward
in time forced by ML conditions that are 0 in both boxes at all times except qM (0) = 1 (qH (0) = 1). ML 𝛿18Oc anomaly
estimates and their standard error are shown in cases (c) without and (d) with column normalization. In both cases,
values at 5 ka lie in the null space and are 0, as they are not constrained by benthic observations. In Figure C1d, q̃M(t)
and q̃H(t) are identical. All 𝛿18Oc values have units of permil VPDB.

ML boxes, respectively, to an intermediate box with volume V1 = 108 km3 and 𝛿18Oc equal to c1(t). The inter-
mediate box in turn exchanges fluid at constant rate F12 = 10 Sv with a deep box with volume V2 = 108 km3

and tracer concentration c2(t). A compensating flux, F2∞ = 10 Sv, evacuates fluid from the deep box out of
the system.

The state vector in the four-box model is c(t) =
[

c1(t) , c2(t)
]⊤

, and the ML vector is q(t) =
[

qM(t) , qH(t)
]⊤

.
Combining the equations for conservation of volume and 𝛿18Oc, the evolution in each box is described by a
vector equation in the form of equation (1),

c (t + Δt) =

[
1 − Δt

𝜏1
0

F12Δt

V2
1 − Δt

𝜏2

]
c(t) +

[
FHΔt

V1

FMΔt

V1

0 0

]
q(t), (C1)

where the flushing times, 𝜏1 and 𝜏2, are defined as 𝜏1 = V1∕
(

FM + FH

)
and 𝜏2 = V2∕

(
FM + FH

)
; here 𝜏1 = 𝜏2 =

317 years. Green’s functions describing 𝛿18Oc propagation from the two ML regions to the deep box (Figure C1)
are qualitatively similar to those derived from GH12 for the North Atlantic core site (Figure 3). Green’s function
for qH is FH

FM
= 9 times larger than that for qM at all times, a consequence of differing volume fluxes out of the

two ML regions. Deep box 𝛿18Oc is influenced by a sum of ML signals, qM(t) and qH(t), lagged and smoothed
in time and spatially weighted, similar to the model of GH12.

As in section 4, set t0 = −25,000 years, Δt = 200 years, and the number of times equal to 101. Choose
B = [0 , 1] in equation (2) to represent NA3146 as a noisy estimate of deep box 𝛿18Oc . The four-box inverse
problem is described by equation (7), where G is constructed (Appendix A) from B and the matrices in
equation (C1), the 101 × 1 vector y is the objectively mapped NA3146 record, n is a 101 × 1 vector of obser-
vational error, and q is a 202 × 1 vector of qM and qH at all times. Effects of initial conditions are ignored. The
problem is row weighted to reflect the objectively mapped uncertainties of NA3146 (section 2).

The problem is solved with and without scaling the columns of G by their norms [Wunsch, 2006]. Both the
scaled and unscaled problems have K = 100 nonzero singular values with the corresponding singular vectors
describing variations in qM and qH in a fixed ratio at all times except t = 5000 years, which is not constrained by
the benthic data (due to the finite lag in tracer transport). Information about differences between qM and qH is
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destroyed en route to box 2 by mixing in box 1; as a result, these differences, at all times, lie in the null space.
K ′ = K = 100 is used in both solutions because all nonzero singular values are greater than the observational
uncertainties.

The scaled and unscaled solutions are shown in Figure C1. In both cases, the solution exactly reconstructs
NA3146 (not shown) except for an initial deviation due to erroneous initial conditions. The unscaled solution
is biased so that the solution in each ML location is proportional to the respective volume fluxes into box 1,
i.e., q̃H(t)∕q̃M(t) = FH∕FM. By contrast, the scaled solution infers the same values in the two ML regions at all
times, so that q̃H(t) = q̃M(t). Neither solution is truly desirable, but because signals from the two surface boxes
are mixed en route to the observations, the data cannot “unmix” spatial gradients and the solutions, q̃H(t) and
q̃M(t), can only be inferred in a fixed ratio. Without scaling the problem, that ratio is set by FH∕FM, and large
spatial gradients, which may be a priori undesirable for ocean tracer distributions, in ML 𝛿18Oc can be inferred
because of the distribution of surface ocean ventilation rates.

The four-box model recovers two characteristic features of the problem solved in section 4. First, scaling
by column norms removes spatial gradients but forces ML boxes to covary; this effect is probably respon-
sible for the highly uncertain patterns of spatial covariance inferred in section 4. Second, in the scaled
case, pointwise resolvabilities in the two ML boxes are proportional to volume fluxes out of those
boxes (and, by extension, to corresponding Green’s function amplitudes), rM = FM∕(FH + FM) = 0.1 and
rH = FH∕(FH + FM) = 0.9. This result echoes findings in section 4, though the relationship between r and
ventilation rates is expected to be more complex in the many-box model of GH12.
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